How to cite this paper
Khademi-Kouhi, M & Shakouri, M. (2024). Vibration of cylindrical shells: Design criteria for transition from shell modes to beam modes.Engineering Solid Mechanics, 12(1), 1-10.
Refrences
Amabili, M. (2008). Nonlinear vibrations and stability of shells and plates: Cambridge University Press.
Blaauwendraad, J., & Hoefakker, J. H. (2014). Structural shell analysis. Springer, The Netherlands, p300. doi, 10, 978-994.
Craig, R. R., & Kurdila, A. J. (2006). Fundamentals of structural dynamics: John Wiley & Sons.
Farshidianfar, A., Farshidianfar, M. H., Crocker, M. J., & Smith, W. O. (2011). Vibration analysis of long cylindrical shells using acoustical excitation. Journal of Sound and Vibration, 330(14), 3381-3399.
Fazzolari, F. A. (2020). A beam formulation with 3D capabilities for the free vibration analysis of thin-walled metallic and composite structures. Thin-Walled Structures, 146, 106441.
Forsberg, K. (1969). Axisymmetric and beam-type vibrations of thin cylindrical shells. AIAA Journal, 7(2), 221-227.
Kumar, A., Das, S. L., & Wahi, P. (2017). Effect of radial loads on the natural frequencies of thin-walled circular cylindrical shells. International Journal of Mechanical Sciences, 122, 37-52.
Leissa, A. W. (1993). Vibration of shells: Acoustical Society of America.
Lopatin, A. V., & Morozov, E. V. (2019). Axisymmetric vibrations of the composite orthotropic cylindrical shell with rigid weightless end disks. Thin-Walled Structures, 135, 463-471.
Mikhasev, G. I., & Altenbach, H. (2019). Thin-walled Laminated Structures: Buckling, Vibrations and Their Suppression: Springer International Publishing.
Oliazadeh, P., Farshidianfar, M. H., & Farshidianfar, A. (2013a). Exact analysis of resonance frequency and mode shapes of isotropic and laminated composite cylindrical shells; Part I: analytical studies. Journal of Mechanical Science and Technology, 27(12), 3635-3643. doi:10.1007/s12206-013-0905-1
Oliazadeh, P., Farshidianfar, M. H., & Farshidianfar, A. (2013b). Exact analysis of resonance frequency and mode shapes of isotropic and laminated composite cylindrical shells; Part II: Parametric studies. Journal of Mechanical Science and Technology, 27(12), 3645-3649. doi:10.1007/s12206-013-0907-z
Pavlov, I., & Kuptsov, V. (1975). Beam-type vibrations of a noncircular cylindrical rotating shell. International Applied Mechanics, 11(3), 329-331.
Qatu, M. S. (2004). Vibration of laminated shells and plates. UK: Elsevier Science.
Sarkar, A., & Sonti, V. R. (2009). Asymptotic analysis for the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell: The beam mode. Journal of Sound and Vibration, 319(1), 646-667.
Shen, H., Païdoussis, M. P., Wen, J., Yu, D., & Wen, X. (2014). The beam-mode stability of periodic functionally-graded-material shells conveying fluid. Journal of Sound and Vibration, 333(10), 2735-2749.
Soedel, W. (2004). Vibrations of shells and plates: Marcel Dekker.
Vinson, J. R. (1993). Vibration of Isotropic Shells. In The Behavior of Shells Composed of Isotropic and Composite Materials (pp. 221-237): Springer.
Khademi-kouhi, M., Shakouri, M. J. J. o. V., & Sound. (2022). Analysis and investigation of the effect of elastic mechanical properties on the vibration behavior of cylindrical shells made of materials with gradient properties with different boundary conditions.
Wang, C., Ru, C., & Mioduchowski, A. (2005). Axisymmetric and beamlike vibrations of multiwall carbon nanotubes. Physical Review B, 72(7), 075414.
Winfield, D. C., Lu, C. H., & Mao, R. (1997). Beam-type modeling for the free vibration of a long thick laminated conical tube. Composites Part B: Engineering, 28(5–6), 555-563.
Blaauwendraad, J., & Hoefakker, J. H. (2014). Structural shell analysis. Springer, The Netherlands, p300. doi, 10, 978-994.
Craig, R. R., & Kurdila, A. J. (2006). Fundamentals of structural dynamics: John Wiley & Sons.
Farshidianfar, A., Farshidianfar, M. H., Crocker, M. J., & Smith, W. O. (2011). Vibration analysis of long cylindrical shells using acoustical excitation. Journal of Sound and Vibration, 330(14), 3381-3399.
Fazzolari, F. A. (2020). A beam formulation with 3D capabilities for the free vibration analysis of thin-walled metallic and composite structures. Thin-Walled Structures, 146, 106441.
Forsberg, K. (1969). Axisymmetric and beam-type vibrations of thin cylindrical shells. AIAA Journal, 7(2), 221-227.
Kumar, A., Das, S. L., & Wahi, P. (2017). Effect of radial loads on the natural frequencies of thin-walled circular cylindrical shells. International Journal of Mechanical Sciences, 122, 37-52.
Leissa, A. W. (1993). Vibration of shells: Acoustical Society of America.
Lopatin, A. V., & Morozov, E. V. (2019). Axisymmetric vibrations of the composite orthotropic cylindrical shell with rigid weightless end disks. Thin-Walled Structures, 135, 463-471.
Mikhasev, G. I., & Altenbach, H. (2019). Thin-walled Laminated Structures: Buckling, Vibrations and Their Suppression: Springer International Publishing.
Oliazadeh, P., Farshidianfar, M. H., & Farshidianfar, A. (2013a). Exact analysis of resonance frequency and mode shapes of isotropic and laminated composite cylindrical shells; Part I: analytical studies. Journal of Mechanical Science and Technology, 27(12), 3635-3643. doi:10.1007/s12206-013-0905-1
Oliazadeh, P., Farshidianfar, M. H., & Farshidianfar, A. (2013b). Exact analysis of resonance frequency and mode shapes of isotropic and laminated composite cylindrical shells; Part II: Parametric studies. Journal of Mechanical Science and Technology, 27(12), 3645-3649. doi:10.1007/s12206-013-0907-z
Pavlov, I., & Kuptsov, V. (1975). Beam-type vibrations of a noncircular cylindrical rotating shell. International Applied Mechanics, 11(3), 329-331.
Qatu, M. S. (2004). Vibration of laminated shells and plates. UK: Elsevier Science.
Sarkar, A., & Sonti, V. R. (2009). Asymptotic analysis for the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell: The beam mode. Journal of Sound and Vibration, 319(1), 646-667.
Shen, H., Païdoussis, M. P., Wen, J., Yu, D., & Wen, X. (2014). The beam-mode stability of periodic functionally-graded-material shells conveying fluid. Journal of Sound and Vibration, 333(10), 2735-2749.
Soedel, W. (2004). Vibrations of shells and plates: Marcel Dekker.
Vinson, J. R. (1993). Vibration of Isotropic Shells. In The Behavior of Shells Composed of Isotropic and Composite Materials (pp. 221-237): Springer.
Khademi-kouhi, M., Shakouri, M. J. J. o. V., & Sound. (2022). Analysis and investigation of the effect of elastic mechanical properties on the vibration behavior of cylindrical shells made of materials with gradient properties with different boundary conditions.
Wang, C., Ru, C., & Mioduchowski, A. (2005). Axisymmetric and beamlike vibrations of multiwall carbon nanotubes. Physical Review B, 72(7), 075414.
Winfield, D. C., Lu, C. H., & Mao, R. (1997). Beam-type modeling for the free vibration of a long thick laminated conical tube. Composites Part B: Engineering, 28(5–6), 555-563.