How to cite this paper
Arnob, F., Anwar, M., Islam, M., Arifuzzaman, M & Bari, M. (2023). Negative stiffness honeycomb structure as automobile leaf spring: A numerical investigation.Engineering Solid Mechanics, 11(4), 389-400.
Refrences
Baviskar, A., Bhamre, V., & Sarode, S. (2013). Design and Analysis of a Leaf Spring for automobile suspension system: a review. International Journal of Emerging Technology and Advanced Engineering, 3(6), 407-410.
Bhanage, A., & Padmanabhan, K. (2014). Design for fatigue and simulation of glass fibre/epoxy composite automobile leaf spring. ARPN Journal of Engineering and Applied Sciences, 9(3), 196.
Chen, S., Tan, X., Hu, J., Zhu, S., Wang, B., Wang, L., . . . Wu, L. (2021). A novel gradient negative stiffness honeycomb for recoverable energy absorption. Composites Part B: Engineering, 215, 108745.
Chen, S., Wang, B., Zhu, S., Tan, X., Hu, J., Lian, X., . . . Wu, L. (2020). A novel composite negative stiffness structure for recoverable trapping energy. Composites Part A: Applied science and manufacturing, 129, 105697.
Correa, D. M., Klatt, T., Cortes, S., Haberman, M., Kovar, D., & Seepersad, C. (2015). Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping Journal.
Correa, D. M., Seepersad, C. C., & Haberman, M. R. (2015). Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 4(1), 165-175.
D’Silva, S., & Jain, S. (2014). Design of a modified leaf spring with an integrated damping system for added comfort and longer life. International Journal of Research in Engineering and Technology, 3(1), 30-34.
Debeau, D. A., Seepersad, C. C., & Haberman, M. R. (2018). Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 33(3), 290-299.
Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P., & Wegener, M. (2016). Tailored buckling microlattices as reusable light‐weight shock absorbers. Advanced Materials, 28(28), 5865-5870.
Ganilova, O. A., & Low, J. J. (2018). Application of smart honeycomb structures for automotive passive safety. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(6), 797-811.
Ha, C. S., Lakes, R. S., & Plesha, M. E. (2019). Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. International Journal of Solids and Structures, 178, 127-135.
Hibbitt, Karlsson, & Sorensen. (1997). ABAQUS: theory manual (Vol. 2): Hibbitt, Karlsson & Sorensen.
Hwang, W., & Han, K. S. (1989). Fatigue of composite materials--damage model and life prediction: ASTM International.
Ismaeel, L. M. A. (2015). Optimization and static stress analysis of hybrid fiber reinforced composite leaf spring. Advances in Materials Science and Engineering, 2015.
Kim, W. J. Y. a. H. C. (1988). Double Tapered FRP Beam for Automotive Suspension Leaf Spring. Composite Structures, 9(1988), 279-300.
Klatt, T., Haberman, M., & Conner Seepersad, C. (2013). Selective laser sintering of negative stiffness mesostructures for recoverable, nearly-ideal shock isolation. Paper presented at the 2013 International Solid Freeform Fabrication Symposium.
Krishan, K., & Aggarwal, M. (2012). A finite element approach for analysis of a multi leaf spring using CAE tools. Res. J. Recent Sci, 2277, 2502.
Kumar, M. S., & Vijayarangan, S. (2007). Static analysis and fatigue life prediction of steel and composite leaf spring for light passenger vehicles.
Lee, C.-M., Goverdovskiy, V., & Temnikov, A. (2007). Design of springs with “negative” stiffness to improve vehicle driver vibration isolation. Journal of sound and vibration, 302(4-5), 865-874.
May Mya Darli Cho, H. H. W. a. A. K. L. (2017). Design and Analysis of Leaf Spring for Solar Vehicle Paper presented at the IIER International Conference, Bangkok, Thailand.
Meaud, J., & Che, K. (2017). Tuning elastic wave propagation in multistable architected materials. International Journal of Solids and Structures, 122, 69-80.
Mehul, S., Shah, D. B., & Bhojawala, V. (2012). Analysis of composite leaf spring using FEA for light vehicle mini truck. Journal of Information, Knowledge and Research in Mechanical Engineering, 2(2), 424-428.
Noronha, B., Yesudasan, S., & Chacko, S. (2020). Static and dynamic analysis of automotive leaf spring: a comparative study of various materials using ANSYS. Journal of Failure Analysis and Prevention, 20(3), 804-818.
Rajesh, N. H., & Sreekumar, M. (2016). Design and simulation of a novel hybrid leaf spring with embedded cylindrical structures. International Journal of Heavy Vehicle Systems, 23(2), 131-154.
Rao, P. S., & Venkatesh, R. (2015). Modal and harmonic analysis of leaf spring using composite materials. International Journal of Novel Research in Electrical and Mechanical Engineering, 2(3), 67-75.
San Ha, N., & Lu, G. (2020). A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181, 107496.
Shamim, S., & Anwer, J. (2014). Design and optimization of automotive multi-leaf spring by finite element method. IJRAME, 2, 46-54.
Shan, S., Kang, S. H., Raney, J. R., Wang, P., Fang, L., Candido, F., . . . Bertoldi, K. (2015). Multistable architected materials for trapping elastic strain energy. Advanced Materials, 27(29), 4296-4301.
Shankar, G. S. S., & Vijayarangan, S. (2006). Mono composite leaf spring for light weight vehicle–design, end joint analysis and testing. Materials science, 12(3), 220-225.
Soner, M., Guven, N., Kanbolat, A., Erdogus, T., & Karaagac, M. (2011). Parabolic leaf spring design optimization considering FEA & rig test correlation: SAE Technical Paper.
Tan, X., Wang, B., Chen, S., Zhu, S., & Sun, Y. (2019). A novel cylindrical negative stiffness structure for shock isolation. Composite Structures, 214, 397-405.
Wang, B., Tan, X., Zhu, S., Chen, S., Yao, K., Xu, P., . . . Sun, Y. (2019). Cushion performance of cylindrical negative stiffness structures: Analysis and optimization. Composite Structures, 227, 111276.
Zhakatayev, A., Kappassov, Z., & Varol, H. A. (2020). Analytical modeling and design of negative stiffness honeycombs. Smart Materials and Structures, 29(4), 045024.
Zou, X., Zhang, B., & Yin, G. (2022). Analysis of stiffness and damping performance of the composite leaf spring. Scientific Reports, 12(1), 1-10.
Bhanage, A., & Padmanabhan, K. (2014). Design for fatigue and simulation of glass fibre/epoxy composite automobile leaf spring. ARPN Journal of Engineering and Applied Sciences, 9(3), 196.
Chen, S., Tan, X., Hu, J., Zhu, S., Wang, B., Wang, L., . . . Wu, L. (2021). A novel gradient negative stiffness honeycomb for recoverable energy absorption. Composites Part B: Engineering, 215, 108745.
Chen, S., Wang, B., Zhu, S., Tan, X., Hu, J., Lian, X., . . . Wu, L. (2020). A novel composite negative stiffness structure for recoverable trapping energy. Composites Part A: Applied science and manufacturing, 129, 105697.
Correa, D. M., Klatt, T., Cortes, S., Haberman, M., Kovar, D., & Seepersad, C. (2015). Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping Journal.
Correa, D. M., Seepersad, C. C., & Haberman, M. R. (2015). Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 4(1), 165-175.
D’Silva, S., & Jain, S. (2014). Design of a modified leaf spring with an integrated damping system for added comfort and longer life. International Journal of Research in Engineering and Technology, 3(1), 30-34.
Debeau, D. A., Seepersad, C. C., & Haberman, M. R. (2018). Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 33(3), 290-299.
Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P., & Wegener, M. (2016). Tailored buckling microlattices as reusable light‐weight shock absorbers. Advanced Materials, 28(28), 5865-5870.
Ganilova, O. A., & Low, J. J. (2018). Application of smart honeycomb structures for automotive passive safety. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(6), 797-811.
Ha, C. S., Lakes, R. S., & Plesha, M. E. (2019). Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. International Journal of Solids and Structures, 178, 127-135.
Hibbitt, Karlsson, & Sorensen. (1997). ABAQUS: theory manual (Vol. 2): Hibbitt, Karlsson & Sorensen.
Hwang, W., & Han, K. S. (1989). Fatigue of composite materials--damage model and life prediction: ASTM International.
Ismaeel, L. M. A. (2015). Optimization and static stress analysis of hybrid fiber reinforced composite leaf spring. Advances in Materials Science and Engineering, 2015.
Kim, W. J. Y. a. H. C. (1988). Double Tapered FRP Beam for Automotive Suspension Leaf Spring. Composite Structures, 9(1988), 279-300.
Klatt, T., Haberman, M., & Conner Seepersad, C. (2013). Selective laser sintering of negative stiffness mesostructures for recoverable, nearly-ideal shock isolation. Paper presented at the 2013 International Solid Freeform Fabrication Symposium.
Krishan, K., & Aggarwal, M. (2012). A finite element approach for analysis of a multi leaf spring using CAE tools. Res. J. Recent Sci, 2277, 2502.
Kumar, M. S., & Vijayarangan, S. (2007). Static analysis and fatigue life prediction of steel and composite leaf spring for light passenger vehicles.
Lee, C.-M., Goverdovskiy, V., & Temnikov, A. (2007). Design of springs with “negative” stiffness to improve vehicle driver vibration isolation. Journal of sound and vibration, 302(4-5), 865-874.
May Mya Darli Cho, H. H. W. a. A. K. L. (2017). Design and Analysis of Leaf Spring for Solar Vehicle Paper presented at the IIER International Conference, Bangkok, Thailand.
Meaud, J., & Che, K. (2017). Tuning elastic wave propagation in multistable architected materials. International Journal of Solids and Structures, 122, 69-80.
Mehul, S., Shah, D. B., & Bhojawala, V. (2012). Analysis of composite leaf spring using FEA for light vehicle mini truck. Journal of Information, Knowledge and Research in Mechanical Engineering, 2(2), 424-428.
Noronha, B., Yesudasan, S., & Chacko, S. (2020). Static and dynamic analysis of automotive leaf spring: a comparative study of various materials using ANSYS. Journal of Failure Analysis and Prevention, 20(3), 804-818.
Rajesh, N. H., & Sreekumar, M. (2016). Design and simulation of a novel hybrid leaf spring with embedded cylindrical structures. International Journal of Heavy Vehicle Systems, 23(2), 131-154.
Rao, P. S., & Venkatesh, R. (2015). Modal and harmonic analysis of leaf spring using composite materials. International Journal of Novel Research in Electrical and Mechanical Engineering, 2(3), 67-75.
San Ha, N., & Lu, G. (2020). A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181, 107496.
Shamim, S., & Anwer, J. (2014). Design and optimization of automotive multi-leaf spring by finite element method. IJRAME, 2, 46-54.
Shan, S., Kang, S. H., Raney, J. R., Wang, P., Fang, L., Candido, F., . . . Bertoldi, K. (2015). Multistable architected materials for trapping elastic strain energy. Advanced Materials, 27(29), 4296-4301.
Shankar, G. S. S., & Vijayarangan, S. (2006). Mono composite leaf spring for light weight vehicle–design, end joint analysis and testing. Materials science, 12(3), 220-225.
Soner, M., Guven, N., Kanbolat, A., Erdogus, T., & Karaagac, M. (2011). Parabolic leaf spring design optimization considering FEA & rig test correlation: SAE Technical Paper.
Tan, X., Wang, B., Chen, S., Zhu, S., & Sun, Y. (2019). A novel cylindrical negative stiffness structure for shock isolation. Composite Structures, 214, 397-405.
Wang, B., Tan, X., Zhu, S., Chen, S., Yao, K., Xu, P., . . . Sun, Y. (2019). Cushion performance of cylindrical negative stiffness structures: Analysis and optimization. Composite Structures, 227, 111276.
Zhakatayev, A., Kappassov, Z., & Varol, H. A. (2020). Analytical modeling and design of negative stiffness honeycombs. Smart Materials and Structures, 29(4), 045024.
Zou, X., Zhang, B., & Yin, G. (2022). Analysis of stiffness and damping performance of the composite leaf spring. Scientific Reports, 12(1), 1-10.