How to cite this paper
Imran, A., Haghjoo, M & Beigzadeh, B. (2023). Design of a novel above-knee prosthetic leg with a passive energy-saving mechanism.Engineering Solid Mechanics, 11(4), 339-352.
Refrences
Al-Maliky, F. T., & Chiad, J. S. (2021). Study and evaluation of four bar polycentric knee used in the prosthetic limb for transfemoral amputee during the gait cycle. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.12.709
Blaya, J. A., & Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24–31. https://doi.org/10.1109/TNSRE.2003.823266
Collins, S. H., Bruce Wiggin, M., & Sawicki, G. S. (2015). Reducing the energy cost of human walking using an unpowered exoskeleton. Nature, 522(7555), 212–215. https://doi.org/10.1038/nature14288
Diller, S. B., Collins, S. H., & Majidi, C. (2018). The effects of electroadhesive clutch design parameters on performance characteristics. Journal of Intelligent Material Systems and Structures, 29(19), 3804–3828. https://doi.org/10.1177/1045389X18799474
Diller, S., Majidi, C., & Collins, S. H. (2016). A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In Proceedings - IEEE International Conference on Robotics and Automation (Vol. 2016-June, pp. 682–689). https://doi.org/10.1109/ICRA.2016.7487194
Dollar, A. M., & Herr, H. (2008). Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2008.915453
El-Sayed, A. M., Hamzaid, N. A., & Abu Osman, N. A. (2014). Technology efficacy in active prosthetic knees for transfemoral amputees: A quantitative evaluation. Scientific World Journal, 2014(July). https://doi.org/10.1155/2014/297431
Farris, D. J., & Sawicki, G. S. (2012a). Linking the mechanics and energetics of hopping with elastic ankle exoskeletons. Journal of Applied Physiology, 113(12), 1862–1872. https://doi.org/10.1152/japplphysiol.00802.2012
Farris, D. J., & Sawicki, G. S. (2012b). The mechanics and energetics of human walking and running: A joint level perspective. Journal of the Royal Society Interface, 9(66), 110–118. https://doi.org/10.1098/rsif.2011.0182
Ferris, D. P., Czerniecki, J. M., & Hannaford, B. (2005). An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics, 21(2), 189–197. https://doi.org/10.1123/jab.21.2.189
Ferris, D. P., Gordon, K. E., Sawicki, G. S., & Peethambaran, A. (2006). An improved powered ankle-foot orthosis using proportional myoelectric control. Gait and Posture. https://doi.org/10.1016/j.gaitpost.2005.05.004
Gailey, R., Allen, K., Castles, J., Kucharik, J., & Roeder, M. (2008). Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. Journal of Rehabilitation Research and Development. https://doi.org/10.1682/JRRD.2006.11.0147
Galle, S., Derave, W., Bossuyt, F., Calders, P., Malcolm, P., & De Clercq, D. (2017). Exoskeleton plantarflexion assistance for elderly. Gait and Posture. https://doi.org/10.1016/j.gaitpost.2016.11.040
Galle, Samuel, Malcolm, P., Derave, W., & De Clercq, D. (2014). Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton. European Journal of Applied Physiology, 114(11), 2341–2351. https://doi.org/10.1007/s00421-014-2955-1
Goldfarb, M. (2013). Consideration of Powered Prosthetic Components as They Relate to Microprocessor Knee Systems. JPO Journal of Prosthetics and Orthotics. https://doi.org/10.1097/jpo.0b013e3182a8953e
Grabowski, A. M., & Herr, H. M. (2009). Leg exoskeleton reduces the metabolic cost of human hopping. Journal of Applied Physiology, 107(3), 670–678. https://doi.org/10.1152/japplphysiol.91609.2008
Hansen, A., & Starker, F. (2018). Prosthetic foot principles and their influence on gait. In Handbook of Human Motion. https://doi.org/10.1007/978-3-319-14418-4_74
Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of Biomechanics, 43(2), 203–209. https://doi.org/10.1016/j.jbiomech.2009.09.030
Lamoth, C. J. C., Ainsworth, E., Polomski, W., & Houdijk, H. (2010). Variability and stability analysis of walking of transfemoral amputees. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2010.07.001
Major, M. J., & Fey, N. P. (2018). Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes. Physical Therapy Reviews, 22(3–4). https://doi.org/10.1080/10833196.2017.1346033
Major, M. J., Twiste, M., Kenney, L. P. J., & Howard, D. (2014). The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2013.10.012
Major, M. J., Twiste, M., Kenney, L. P. J., & Howard, D. (2016). The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation. Journal of Rehabilitation Research and Development. https://doi.org/10.1682/JRRD.2015.08.0148
Malcolm, P., Derave, W., Galle, S., & De Clercq, D. (2013). A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056137
Mohanty, R. K., Mohanty, R. C., & Sabut, S. K. (2020). A systematic review on design technology and application of polycentric prosthetic knee in amputee rehabilitation. Physical and Engineering Sciences in Medicine, 43(3), 781–798. https://doi.org/10.1007/s13246-020-00882-3
Mooney, L. M., & Herr, H. M. (2016). Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Journal of NeuroEngineering and Rehabilitation, 13(1). https://doi.org/10.1186/s12984-016-0111-3
Mooney, L. M., Rouse, E. J., & Herr, H. M. (2014). Autonomous exoskeleton reduces metabolic cost of human walking. Journal of NeuroEngineering and Rehabilitation, 11(1), 1–5. https://doi.org/10.1186/1743-0003-11-151
Moxey, P. W., Gogalniceanu, P., Hinchliffe, R. J., Loftus, I. M., Jones, K. J., Thompson, M. M., & Holt, P. J. (2011). Lower extremity amputations - a review of global variability in incidence. Diabetic Medicine. https://doi.org/10.1111/j.1464-5491.2011.03279.x
Phanphet, S., Dechjarern, S., & Jomjanyong, S. (2017). Above-knee prosthesis design based on fatigue life using finite element method and design of experiment. Medical Engineering and Physics, 43, 86–91. https://doi.org/10.1016/j.medengphy.2017.01.001
Sarvestani, A. S., & Azam, A. T. (2013). Amputation: A ten-year survey. Trauma Monthly, 18(3), 126–129. https://doi.org/10.5812/traumamon.11693
Sawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology, 211(9), 1402–1413. https://doi.org/10.1242/jeb.009241
Sawicki, G. S., Gordon, K. E., & Ferris, D. P. (2005). Powered lower limb orthoses: Applications in motor adaptation and rehabilitation. In Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics (Vol. 2005, pp. 206–211). https://doi.org/10.1109/ICORR.2005.1501086
Schmalz, T., Blumentritt, S., & Jarasch, R. (2002). Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components. Gait and Posture, 16(3), 255–263. https://doi.org/10.1016/S0966-6362(02)00008-5
Shepherd, M. K., Azocar, A. F., Major, M. J., & Rouse, E. J. (2018). Amputee perception of prosthetic ankle stiffness during locomotion. Journal of NeuroEngineering and Rehabilitation. https://doi.org/10.1186/s12984-018-0432-5
Soriano, J. F., Rodríguez, J. E., & Valencia, L. A. (2020). Performance comparison and design of an optimal polycentric knee mechanism. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5), 1–13. https://doi.org/10.1007/s40430-020-02313-6
Tryggvason, H., Starker, F., Lecomte, C., & Jonsdottir, F. (2020). Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot. Applied Sciences (Switzerland), 10(2). https://doi.org/10.3390/app10020650
Ventura, J. D., Klute, G. K., & Neptune, R. R. (2011). The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2010.10.003
Westerterp, K. R. (2013). Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Frontiers in Physiology. https://doi.org/10.3389/fphys.2013.00090
Wiggin, M. B., Sawicki, G. S., & Collins, S. H. (2011). An exoskeleton using controlled energy storage and release to aid ankle propulsion. In IEEE International Conference on Rehabilitation Robotics. https://doi.org/10.1109/ICORR.2011.5975342
Wurdeman, S. R., Stevens, P. M., & Campbell, J. H. (2018). Mobility Analysis of AmpuTees (MAAT I): Quality of life and satisfaction are strongly related to mobility for patients with a lower limb prosthesis. Prosthetics and Orthotics International. https://doi.org/10.1177/0309364617736089
Yandell, M. B., Tacca, J. R., & Zelik, K. E. (2019). Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 712–723. https://doi.org/10.1109/TNSRE.2019.2904924
Blaya, J. A., & Herr, H. (2004). Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 24–31. https://doi.org/10.1109/TNSRE.2003.823266
Collins, S. H., Bruce Wiggin, M., & Sawicki, G. S. (2015). Reducing the energy cost of human walking using an unpowered exoskeleton. Nature, 522(7555), 212–215. https://doi.org/10.1038/nature14288
Diller, S. B., Collins, S. H., & Majidi, C. (2018). The effects of electroadhesive clutch design parameters on performance characteristics. Journal of Intelligent Material Systems and Structures, 29(19), 3804–3828. https://doi.org/10.1177/1045389X18799474
Diller, S., Majidi, C., & Collins, S. H. (2016). A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In Proceedings - IEEE International Conference on Robotics and Automation (Vol. 2016-June, pp. 682–689). https://doi.org/10.1109/ICRA.2016.7487194
Dollar, A. M., & Herr, H. (2008). Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2008.915453
El-Sayed, A. M., Hamzaid, N. A., & Abu Osman, N. A. (2014). Technology efficacy in active prosthetic knees for transfemoral amputees: A quantitative evaluation. Scientific World Journal, 2014(July). https://doi.org/10.1155/2014/297431
Farris, D. J., & Sawicki, G. S. (2012a). Linking the mechanics and energetics of hopping with elastic ankle exoskeletons. Journal of Applied Physiology, 113(12), 1862–1872. https://doi.org/10.1152/japplphysiol.00802.2012
Farris, D. J., & Sawicki, G. S. (2012b). The mechanics and energetics of human walking and running: A joint level perspective. Journal of the Royal Society Interface, 9(66), 110–118. https://doi.org/10.1098/rsif.2011.0182
Ferris, D. P., Czerniecki, J. M., & Hannaford, B. (2005). An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics, 21(2), 189–197. https://doi.org/10.1123/jab.21.2.189
Ferris, D. P., Gordon, K. E., Sawicki, G. S., & Peethambaran, A. (2006). An improved powered ankle-foot orthosis using proportional myoelectric control. Gait and Posture. https://doi.org/10.1016/j.gaitpost.2005.05.004
Gailey, R., Allen, K., Castles, J., Kucharik, J., & Roeder, M. (2008). Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. Journal of Rehabilitation Research and Development. https://doi.org/10.1682/JRRD.2006.11.0147
Galle, S., Derave, W., Bossuyt, F., Calders, P., Malcolm, P., & De Clercq, D. (2017). Exoskeleton plantarflexion assistance for elderly. Gait and Posture. https://doi.org/10.1016/j.gaitpost.2016.11.040
Galle, Samuel, Malcolm, P., Derave, W., & De Clercq, D. (2014). Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton. European Journal of Applied Physiology, 114(11), 2341–2351. https://doi.org/10.1007/s00421-014-2955-1
Goldfarb, M. (2013). Consideration of Powered Prosthetic Components as They Relate to Microprocessor Knee Systems. JPO Journal of Prosthetics and Orthotics. https://doi.org/10.1097/jpo.0b013e3182a8953e
Grabowski, A. M., & Herr, H. M. (2009). Leg exoskeleton reduces the metabolic cost of human hopping. Journal of Applied Physiology, 107(3), 670–678. https://doi.org/10.1152/japplphysiol.91609.2008
Hansen, A., & Starker, F. (2018). Prosthetic foot principles and their influence on gait. In Handbook of Human Motion. https://doi.org/10.1007/978-3-319-14418-4_74
Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of Biomechanics, 43(2), 203–209. https://doi.org/10.1016/j.jbiomech.2009.09.030
Lamoth, C. J. C., Ainsworth, E., Polomski, W., & Houdijk, H. (2010). Variability and stability analysis of walking of transfemoral amputees. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2010.07.001
Major, M. J., & Fey, N. P. (2018). Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes. Physical Therapy Reviews, 22(3–4). https://doi.org/10.1080/10833196.2017.1346033
Major, M. J., Twiste, M., Kenney, L. P. J., & Howard, D. (2014). The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2013.10.012
Major, M. J., Twiste, M., Kenney, L. P. J., & Howard, D. (2016). The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation. Journal of Rehabilitation Research and Development. https://doi.org/10.1682/JRRD.2015.08.0148
Malcolm, P., Derave, W., Galle, S., & De Clercq, D. (2013). A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056137
Mohanty, R. K., Mohanty, R. C., & Sabut, S. K. (2020). A systematic review on design technology and application of polycentric prosthetic knee in amputee rehabilitation. Physical and Engineering Sciences in Medicine, 43(3), 781–798. https://doi.org/10.1007/s13246-020-00882-3
Mooney, L. M., & Herr, H. M. (2016). Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Journal of NeuroEngineering and Rehabilitation, 13(1). https://doi.org/10.1186/s12984-016-0111-3
Mooney, L. M., Rouse, E. J., & Herr, H. M. (2014). Autonomous exoskeleton reduces metabolic cost of human walking. Journal of NeuroEngineering and Rehabilitation, 11(1), 1–5. https://doi.org/10.1186/1743-0003-11-151
Moxey, P. W., Gogalniceanu, P., Hinchliffe, R. J., Loftus, I. M., Jones, K. J., Thompson, M. M., & Holt, P. J. (2011). Lower extremity amputations - a review of global variability in incidence. Diabetic Medicine. https://doi.org/10.1111/j.1464-5491.2011.03279.x
Phanphet, S., Dechjarern, S., & Jomjanyong, S. (2017). Above-knee prosthesis design based on fatigue life using finite element method and design of experiment. Medical Engineering and Physics, 43, 86–91. https://doi.org/10.1016/j.medengphy.2017.01.001
Sarvestani, A. S., & Azam, A. T. (2013). Amputation: A ten-year survey. Trauma Monthly, 18(3), 126–129. https://doi.org/10.5812/traumamon.11693
Sawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology, 211(9), 1402–1413. https://doi.org/10.1242/jeb.009241
Sawicki, G. S., Gordon, K. E., & Ferris, D. P. (2005). Powered lower limb orthoses: Applications in motor adaptation and rehabilitation. In Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics (Vol. 2005, pp. 206–211). https://doi.org/10.1109/ICORR.2005.1501086
Schmalz, T., Blumentritt, S., & Jarasch, R. (2002). Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components. Gait and Posture, 16(3), 255–263. https://doi.org/10.1016/S0966-6362(02)00008-5
Shepherd, M. K., Azocar, A. F., Major, M. J., & Rouse, E. J. (2018). Amputee perception of prosthetic ankle stiffness during locomotion. Journal of NeuroEngineering and Rehabilitation. https://doi.org/10.1186/s12984-018-0432-5
Soriano, J. F., Rodríguez, J. E., & Valencia, L. A. (2020). Performance comparison and design of an optimal polycentric knee mechanism. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(5), 1–13. https://doi.org/10.1007/s40430-020-02313-6
Tryggvason, H., Starker, F., Lecomte, C., & Jonsdottir, F. (2020). Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot. Applied Sciences (Switzerland), 10(2). https://doi.org/10.3390/app10020650
Ventura, J. D., Klute, G. K., & Neptune, R. R. (2011). The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2010.10.003
Westerterp, K. R. (2013). Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Frontiers in Physiology. https://doi.org/10.3389/fphys.2013.00090
Wiggin, M. B., Sawicki, G. S., & Collins, S. H. (2011). An exoskeleton using controlled energy storage and release to aid ankle propulsion. In IEEE International Conference on Rehabilitation Robotics. https://doi.org/10.1109/ICORR.2011.5975342
Wurdeman, S. R., Stevens, P. M., & Campbell, J. H. (2018). Mobility Analysis of AmpuTees (MAAT I): Quality of life and satisfaction are strongly related to mobility for patients with a lower limb prosthesis. Prosthetics and Orthotics International. https://doi.org/10.1177/0309364617736089
Yandell, M. B., Tacca, J. R., & Zelik, K. E. (2019). Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 712–723. https://doi.org/10.1109/TNSRE.2019.2904924