How to cite this paper
Safari, H., Karevan, M & Nahvi, H. (2023). Fracture toughness evaluation of zeolite/polyurethane-filled woven panels.Engineering Solid Mechanics, 11(3), 325-338.
Refrences
Alsaadi, M., Erkliğ, A., & Bulut, M. (2018). Mixed-mode I/III fracture toughness of polymer matrix composites toughened with waste particles. Science and Engineering of Composite Materials, 25(4), 679-687.
Alsaadi, M., & Erkliğ, A. (2017). A comparative study on mode I and mode II interlaminar behavior of borax and SiC particles toughened S-glass fabric/epoxy composite. Arabian Journal for Science and Engineering, 42(11), 4759-4769.
Anderson, T. L. (2005), Fracture mechanics: fundamentals and applications, New York: CRC press.
ASTM, E. (1991). Standard test method for plane-strain fracture toughness of metallic materials. Annual book of ASTM standards, pp. 506-536.
ASTM, I. (2007). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-07.
ASTM, I. (2007). Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. ASTM D5045-99.
Byun, J. H., Gillespie Jr, J. W., & Chou, T. W. (1990). Mode I delamination of a three-dimensional fabric composite. Journal of Composite Materials, 24(5), 497-518.
Callus, P. J., Mouritz, A. P., Bannister, M. K., & Leong, K. H. (1999). Tensile properties and failure mechanisms of 3D woven GRP composites. Composites Part A: applied science and manufacturing, 30(11), 1277-1287.
Carolan, D., Kinloch, A. J., Ivankovic, A., Sprenger, S., & Taylor, A. C. (2016). Mechanical and fracture performance of carbon fibre reinforced composites with nanoparticle modified matrices. Procedia Structural Integrity, 2, 96-103.
Cholake, S. T., Moran, G., Joe, B., Bai, Y., Raman, R. S., Zhao, X. L., & Bandyopadhyay, S. (2016). Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre. Construction and Building Materials, 111, 399-407.
Danielsson, M. (1996). Toughened rigid foam core material for use in sandwich constructions. Cellular polymers, 15(6), 417-435.
De Souza, J. M., Yoshimura, H. N., Peres, F. M., & Schön, C. G. (2012). Effect of sample pre-cracking method and notch geometry in plane strain fracture toughness tests as applied to a PMMA resin. Polymer Testing, 31(6), 834-840.
Dransfield, K., Baillie, C., & Mai, Y. W. (1994). Improving the delamination resistance of CFRP by stitching—a review. Composites Science and Technology, 50(3), 305-317.
Fishpool, D. T., Rezai, A., Baker, D., Ogin, S. L., & Smith, P. A. (2013). Interlaminar toughness characterisation of 3D woven carbon fibre composites. Plastics, rubber and composites, 42(3), 108-114.
Göktaş, D., Kennon, W. R., & Potluri, P. (2017). Improvement of Mode I interlaminar fracture toughness of stitched glass/epoxy composites. Applied Composite Materials, 24(2), 351-375.
Gouda, P. S., Kudari, S. K., Prabhuswamy, S., & Jawali, D. (2011). Fracture toughness of glass-carbon (0/90) s fiber-reinforced polymer composite–an experimental and numerical study. Journal of Minerals and Materials Characterization and Engineering, 10(8), 671.
Greenhalgh, E. (2009). Failure analysis and fractography of polymer composites. Cambridge: 1st ed, Woodhead Publishing.
Guénon, V. A., Chou, T. W., & Gillespie, J. W. (1989). Toughness properties of a three-dimensional carbon-epoxy composite. Journal of materials science, 24(11), 4168-4175.
Ji, A. H., Lu, M., Zha, M., Dong, B. Z., Gao, L. H., & Dai, Z. D. (2014). Model I Interlaminar Fracture Toughness of Carbon Fiber-reinforced Polymer Matrix Composites. Advanced Materials Research, 887, 81-85.
Karevan, M. (2022). Elastic response of Carbon Black reinforced polyester based composites using micromechanical models: Role of interphase. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 236 (3-4), 87-100.
Lo, J., Zhang, R., Shalchi-Amirkhiz, B., Walsh, D., Bolduc, M., Lin, S., & Bielawski, M. (2015). Improving Fracture Toughness of Alumina with Multi-Walled Carbon Nanotube and Alumina Fiber Reinforcements. Ceramic engineering and science proceedings. Advances in Ceramic Armor XI, 36(4), 137.
Mouritz, A. P., Baini, C., & Herszberg, I. (1999). Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites. Composites Part A: Applied Science and Manufacturing, 30(7), 859-870.
Mouritz, A. P., & Cox, B. N. (2000). A mechanistic approach to the properties of stitched laminates. Composites part A: applied science and manufacturing, 31(1), 1-27.
Nakayama, J., Abe, H., & Bradt, R. C. (1981). Crack stability in the work‐of‐fracture test: refractory applications. Journal of the American Ceramic Society, 64(11), 671-675.
Nizami, A. S., Ouda, O. K. M., Rehan, M., El-Maghraby, A. M. O., Gardy, J., Hassanpour, A. & Ismail, I. M. I. (2016). The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy, 108, 162-171.
Pabst, R. F. (1974). Determination of K Ic-Factors with Diamond-Saw-Cuts in Ceramic Materials. In Fracture mechanics of ceramics, Boston: Springer, pp. 555-565.
Peret, C. M., & Rodrigues, J. A. (2008). Stability of crack propagation during bending tests on brittle materials. Ceramica, 54, 382-387.
Rao, M. P., Sankar, B. V., & Subhash, G. (2009). Effect of Z-yarns on the stiffness and strength of three-dimensional woven composites. Composites Part B: Engineering, 40(6), 540-551.
Sharma, S. K., & Sankar, B. V. (1997). Effect of stitching on impact and interlaminar properties of graphite/epoxy laminates. Journal of Thermoplastic Composite Materials, 10(3), 241-253.
Shivakumar Gouda, P. S., G Kodancha, K., & Jawali, D. (2013). Experimental and numerical investigations on fracture behavior of high silica glass/satin textile fiber-reinforced hybrid polymer composites. Advanced Materials Letters, 4(11), 827-835.
Solaimurugan, S., & Velmurugan, R. (2008). Influence of in-plane fibre orientation on mode I interlaminar fracture toughness of stitched glass/polyester composites. Composites Science and Technology, 68(7-8), 1742-1752.
Sreekala, M. S., George, J., Kumaran, M. G., & Thomas, S. (2002). The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Composites science and technology, 62(3), 339-353.
Srivastava, V. K., Gries, T., Veit, D., Quadflieg, T., Mohr, B., & Kolloch, M. (2017). Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Engineering Fracture Mechanics, 180, 73-86.
Stewart, J. K., Mahfuz, H., & Carlsson, L. A. (2010). Enhancing mechanical and fracture properties of sandwich composites using nanoparticle reinforcement. Journal of materials science, 45(13), 3490-3496.
Sudheer, M., Pradyoth, K. R., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5(3C), 162-168.
Tan, K. T., Watanabe, N., Sano, M., Iwahori, Y., & Hoshi, H. (2010). Interlaminar fracture toughness of vectran-stitched composites-experimental and computational analysis. Journal of composite materials, 44(26), 3203-3229.
Tan, P., Tong, L., & Steven, G. P. (2000). Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical modeling approaches. Composites Part A: Applied science and manufacturing, 31(3), 273-281.
Tan, P., Tong, L., Steven, G. P., & Ishikawa, T. (2000). Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Composites Part A: Applied Science and Manufacturing, 31(3), 259-271.
Tarfaoui, M., & Hamitouche, L. (2012). Mode I interlaminar fracture toughness of through-thickness reinforced laminated structures. Advanced Materials Research, 423, 154-165.
Tong, L., Mouritz, A. P., & Bannister, M. K. (2002). 3D fibre reinforced polymer composites. Elsevier.
Williams, J. G., Pavan, A., & Blackman, B. (Eds.). (2003). Fracture of Polymers, Composites and Adhesives II: 3rd ESIS TC4 Conference. Elsevier.
Yee, A. F., & Pearson, R. A. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science, 21(7), 2462-2474.
Zimmermann, E. A., Launey, M. E., & Ritchie, R. O. (2010). The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 31(20), 5297-5305
Alsaadi, M., & Erkliğ, A. (2017). A comparative study on mode I and mode II interlaminar behavior of borax and SiC particles toughened S-glass fabric/epoxy composite. Arabian Journal for Science and Engineering, 42(11), 4759-4769.
Anderson, T. L. (2005), Fracture mechanics: fundamentals and applications, New York: CRC press.
ASTM, E. (1991). Standard test method for plane-strain fracture toughness of metallic materials. Annual book of ASTM standards, pp. 506-536.
ASTM, I. (2007). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-07.
ASTM, I. (2007). Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. ASTM D5045-99.
Byun, J. H., Gillespie Jr, J. W., & Chou, T. W. (1990). Mode I delamination of a three-dimensional fabric composite. Journal of Composite Materials, 24(5), 497-518.
Callus, P. J., Mouritz, A. P., Bannister, M. K., & Leong, K. H. (1999). Tensile properties and failure mechanisms of 3D woven GRP composites. Composites Part A: applied science and manufacturing, 30(11), 1277-1287.
Carolan, D., Kinloch, A. J., Ivankovic, A., Sprenger, S., & Taylor, A. C. (2016). Mechanical and fracture performance of carbon fibre reinforced composites with nanoparticle modified matrices. Procedia Structural Integrity, 2, 96-103.
Cholake, S. T., Moran, G., Joe, B., Bai, Y., Raman, R. S., Zhao, X. L., & Bandyopadhyay, S. (2016). Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre. Construction and Building Materials, 111, 399-407.
Danielsson, M. (1996). Toughened rigid foam core material for use in sandwich constructions. Cellular polymers, 15(6), 417-435.
De Souza, J. M., Yoshimura, H. N., Peres, F. M., & Schön, C. G. (2012). Effect of sample pre-cracking method and notch geometry in plane strain fracture toughness tests as applied to a PMMA resin. Polymer Testing, 31(6), 834-840.
Dransfield, K., Baillie, C., & Mai, Y. W. (1994). Improving the delamination resistance of CFRP by stitching—a review. Composites Science and Technology, 50(3), 305-317.
Fishpool, D. T., Rezai, A., Baker, D., Ogin, S. L., & Smith, P. A. (2013). Interlaminar toughness characterisation of 3D woven carbon fibre composites. Plastics, rubber and composites, 42(3), 108-114.
Göktaş, D., Kennon, W. R., & Potluri, P. (2017). Improvement of Mode I interlaminar fracture toughness of stitched glass/epoxy composites. Applied Composite Materials, 24(2), 351-375.
Gouda, P. S., Kudari, S. K., Prabhuswamy, S., & Jawali, D. (2011). Fracture toughness of glass-carbon (0/90) s fiber-reinforced polymer composite–an experimental and numerical study. Journal of Minerals and Materials Characterization and Engineering, 10(8), 671.
Greenhalgh, E. (2009). Failure analysis and fractography of polymer composites. Cambridge: 1st ed, Woodhead Publishing.
Guénon, V. A., Chou, T. W., & Gillespie, J. W. (1989). Toughness properties of a three-dimensional carbon-epoxy composite. Journal of materials science, 24(11), 4168-4175.
Ji, A. H., Lu, M., Zha, M., Dong, B. Z., Gao, L. H., & Dai, Z. D. (2014). Model I Interlaminar Fracture Toughness of Carbon Fiber-reinforced Polymer Matrix Composites. Advanced Materials Research, 887, 81-85.
Karevan, M. (2022). Elastic response of Carbon Black reinforced polyester based composites using micromechanical models: Role of interphase. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 236 (3-4), 87-100.
Lo, J., Zhang, R., Shalchi-Amirkhiz, B., Walsh, D., Bolduc, M., Lin, S., & Bielawski, M. (2015). Improving Fracture Toughness of Alumina with Multi-Walled Carbon Nanotube and Alumina Fiber Reinforcements. Ceramic engineering and science proceedings. Advances in Ceramic Armor XI, 36(4), 137.
Mouritz, A. P., Baini, C., & Herszberg, I. (1999). Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites. Composites Part A: Applied Science and Manufacturing, 30(7), 859-870.
Mouritz, A. P., & Cox, B. N. (2000). A mechanistic approach to the properties of stitched laminates. Composites part A: applied science and manufacturing, 31(1), 1-27.
Nakayama, J., Abe, H., & Bradt, R. C. (1981). Crack stability in the work‐of‐fracture test: refractory applications. Journal of the American Ceramic Society, 64(11), 671-675.
Nizami, A. S., Ouda, O. K. M., Rehan, M., El-Maghraby, A. M. O., Gardy, J., Hassanpour, A. & Ismail, I. M. I. (2016). The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy, 108, 162-171.
Pabst, R. F. (1974). Determination of K Ic-Factors with Diamond-Saw-Cuts in Ceramic Materials. In Fracture mechanics of ceramics, Boston: Springer, pp. 555-565.
Peret, C. M., & Rodrigues, J. A. (2008). Stability of crack propagation during bending tests on brittle materials. Ceramica, 54, 382-387.
Rao, M. P., Sankar, B. V., & Subhash, G. (2009). Effect of Z-yarns on the stiffness and strength of three-dimensional woven composites. Composites Part B: Engineering, 40(6), 540-551.
Sharma, S. K., & Sankar, B. V. (1997). Effect of stitching on impact and interlaminar properties of graphite/epoxy laminates. Journal of Thermoplastic Composite Materials, 10(3), 241-253.
Shivakumar Gouda, P. S., G Kodancha, K., & Jawali, D. (2013). Experimental and numerical investigations on fracture behavior of high silica glass/satin textile fiber-reinforced hybrid polymer composites. Advanced Materials Letters, 4(11), 827-835.
Solaimurugan, S., & Velmurugan, R. (2008). Influence of in-plane fibre orientation on mode I interlaminar fracture toughness of stitched glass/polyester composites. Composites Science and Technology, 68(7-8), 1742-1752.
Sreekala, M. S., George, J., Kumaran, M. G., & Thomas, S. (2002). The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Composites science and technology, 62(3), 339-353.
Srivastava, V. K., Gries, T., Veit, D., Quadflieg, T., Mohr, B., & Kolloch, M. (2017). Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Engineering Fracture Mechanics, 180, 73-86.
Stewart, J. K., Mahfuz, H., & Carlsson, L. A. (2010). Enhancing mechanical and fracture properties of sandwich composites using nanoparticle reinforcement. Journal of materials science, 45(13), 3490-3496.
Sudheer, M., Pradyoth, K. R., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5(3C), 162-168.
Tan, K. T., Watanabe, N., Sano, M., Iwahori, Y., & Hoshi, H. (2010). Interlaminar fracture toughness of vectran-stitched composites-experimental and computational analysis. Journal of composite materials, 44(26), 3203-3229.
Tan, P., Tong, L., & Steven, G. P. (2000). Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical modeling approaches. Composites Part A: Applied science and manufacturing, 31(3), 273-281.
Tan, P., Tong, L., Steven, G. P., & Ishikawa, T. (2000). Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Composites Part A: Applied Science and Manufacturing, 31(3), 259-271.
Tarfaoui, M., & Hamitouche, L. (2012). Mode I interlaminar fracture toughness of through-thickness reinforced laminated structures. Advanced Materials Research, 423, 154-165.
Tong, L., Mouritz, A. P., & Bannister, M. K. (2002). 3D fibre reinforced polymer composites. Elsevier.
Williams, J. G., Pavan, A., & Blackman, B. (Eds.). (2003). Fracture of Polymers, Composites and Adhesives II: 3rd ESIS TC4 Conference. Elsevier.
Yee, A. F., & Pearson, R. A. (1986). Toughening mechanisms in elastomer-modified epoxies. Journal of materials science, 21(7), 2462-2474.
Zimmermann, E. A., Launey, M. E., & Ritchie, R. O. (2010). The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 31(20), 5297-5305