How to cite this paper
Obiko, J., Chown, L., Whitefield, D & Bodunrin, M. (2023). Hot workability characteristics of two A335 P92 steels for power plant application: A comparative study.Engineering Solid Mechanics, 11(3), 311-324.
Refrences
Alsagabi, S. (2016). High Temperature Deformation Behavior of P92 Steel. Transactions of the Indian Institute of Metals, 69(8), 1513–1518. https://doi.org/10.1007/s12666-015-0725-3
Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, 20(7), 887–897. https://doi.org/10.1016/0001-6160(72)90082-X
Cabrera, J. M., Al Omar, A., Jonas, J. J., & Prado, J. M. (1997). Modeling the flow behavior of a medium carbon microalloyed steel under hot working conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 28(11), 2233–2243. https://doi.org/10.1007/s11661-997-0181-8
Carsí, M., Peñalba, F., Rieiro, I., & Ruano, O. A. (2011). High temperature workability behavior of a modified P92 steel. International Journal of Materials Research, 102(11), 1378–1383. https://doi.org/10.3139/146.110603
Czyrska-filemonowicz, A., Zielińska-lipiec, A., & Ennis, P. J. (2006). Modified 9 % Cr Steels for Advanced Power Generation : Microstructure and Properties. Journal of Achievements in Materials and Manufacturing Engineering, 19(2), 43–48.
David, S. A., Siefert, J. A., & Feng, Z. (2013). Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. In Science and Technology of Welding and Joining (Vol. 18, Issue 8, pp. 631–651). https://doi.org/10.1179/1362171813Y.0000000152
El Wahabi, M., Cabrera, J. M., & Prado, J. M. (2003). Hot working of two AISI 304 steels: A comparative study. Materials Science and Engineering A, 343(1–2), 116–125. https://doi.org/10.1016/S0921-5093(02)00357-X
Ennis, P. J., & Czyrska-Filemonowicz, A. (2003). Recent advances in creep-resistant steels for power plant applications. Sadhana, 28(3–4), 709–730. https://doi.org/10.1007/BF02706455
Ennis, P. J., Zielinska-Lipiec, A., Wachter, O., & Czyrska-Filemonowicz, A. (1997). Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Materialia, 45(12), 4901–4907. https://doi.org/10.1016/S1359-6454(97)00176-6
Evans, R. W., & Scharning, P. J. (2001). Axisymmetric compression test and hot working properties of alloys. Materials Science and Technology, 17(8), 995–1004. https://doi.org/10.1179/026708301101510843
Fedoseeva, A., Dudova, N., & Kaibyshev, R. (2016). Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Materials Science and Engineering A, 654, 1–12. https://doi.org/10.1016/j.msea.2015.12.027
Francis, J. A., Mazur, W., & Bhadeshia, H. K. D. H. (2006). Review Type IV cracking in ferritic power plant steels. Materials Science and Technology, 22(12), 1387–1395. https://doi.org/10.1179/174328406X148778
Funakawa, Y., & Ujiro, T. (2010). Tensile properties of chromium-bearing extra low carbon steel sheets. ISIJ International, 50(10), 1488–1495. https://doi.org/10.2355/isijinternational.50.1488
He, A., Xie, G., Yang, X., Wang, X., & Zhang, H. (2015). A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Computational Materials Science, 98, 64–69. https://doi.org/10.1016/j.commatsci.2014.10.044
He, A., Xie, G., Zhang, H., & Wang, X. (2013). A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Materials and Design, 52, 677–685. https://doi.org/10.1016/j.matdes.2013.06.010
Huang, Y., Wang, S., Xiao, Z., & Liu, H. (2017). Critical Condition of Dynamic Recrystallization in 35CrMo Steel. Metals, 7(5), 161. https://doi.org/10.3390/met7050161
Jha, J. S., Tewari, A., Mishra, S., & Toppo, S. (2017). Constitutive Relations for Ti-6Al-4V Hot Working. Procedia Engineering, 173, 755–762. https://doi.org/10.1016/j.proeng.2016.12.089
Kishor, B., Chaudhari, G. P., & Nath, S. K. (2016). Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map. Journal of Materials Engineering and Performance, 25(7), 2651–2660. https://doi.org/10.1007/s11665-016-2159-4
Kumar, N., Kumar, S., Rajput, S. K., & Nath, S. K. (2017). Modelling of flow stress and prediction of workability by processing map for hot compression of 43CrNi steel. ISIJ International, 57(3), 497–505. https://doi.org/10.2355/isijinternational.ISIJINT-2016-306
Laasraoui, A., & Jonas, J. J. (1991). Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A, 22(7), 1545–1558. https://doi.org/10.1007/BF02667368
Li, N., Zhao, C., Jiang, Z., & Zhang, H. (2019). Flow behavior and processing maps of high-strength low-alloy steel during hot compression. Materials Characterization, 153(October 2018), 224–233. https://doi.org/10.1016/j.matchar.2019.05.009
Li, Y., Ji, H., Li, W., Li, Y., Pei, W., & Liu, J. (2018). Hot deformation characteristics-Constitutive equation and processing maps-of 21-4N Heat- resistant steel. Materials, 12(1). https://doi.org/10.3390/ma12010089
Lin, Y. C., Chen, M. S., & Zhang, J. (2009). Modeling of flow stress of 42CrMo steel under hot compression. Materials Science and Engineering A, 499(1–2), 88–92. https://doi.org/10.1016/j.msea.2007.11.119
Lin, Y. C., Chen, M. S., & Zhong, J. (2008). Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mechanics Research Communications, 35(3), 142–150. https://doi.org/10.1016/j.mechrescom.2007.10.002
Lin, Y. C., Li, L. T., Xia, Y. C., & Jiang, Y. Q. (2013). Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds, 550, 438–445. https://doi.org/10.1016/j.jallcom.2012.10.114
Lin, Y. C., Xia, Y. C., Chen, X. M., & Chen, M. S. (2010). Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Computational Materials Science, 50(1), 227–233. https://doi.org/10.1016/j.commatsci.2010.08.003
Liu, C. Y., Zhang, R. J., & Yan, Y. N. (2011). Hot deformation behaviour and constitutive modelling of P92 heat resistant steel. Materials Science and Technology, 27(8), 1281–1286. https://doi.org/10.1179/026708310X12683158443323
Liu, X. G., Ji, H. P., Guo, H., Jin, M., Guo, B. F., & Gao, L. (2013). Study on hot deformation behaviour of 316LN austenitic stainless steel based on hot processing map. Materials Science and Technology, 29(1), 24–29. https://doi.org/10.1179/1743284712Y.0000000083
Luan, J., Sun, C., Li, X., & Zhang, Q. (2014). Constitutive model for AZ31 magnesium alloy based on isothermal compression test. Materials Science and Technology, 30(2), 211–219. https://doi.org/10.1179/1743284713Y.0000000341
Masuyama, F. (2001). History of power plants and progress in heat resistant steels. In ISIJ International (Vol. 41, Issue 6, pp. 612–625). https://doi.org/10.2355/isijinternational.41.612
McQueen, H. J., & Ryan, N. D. (2002). Constitutive analysis in hot working. Materials Science and Engineering A, 322(1–2), 43–63. https://doi.org/10.1016/S0921-5093(01)01117-0
Medina, S. F., & Hernandez, C. A. (1996). General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Materialia, 44(1), 137–148. https://doi.org/10.1016/1359-6454(95)00151-0
Mehtonen, S. V., Karjalainen, L. P., & Porter, D. a. (2014). Modeling of the high temperature flow behavior of stabilized 12–27wt% Cr ferritic stainless steels. Materials Science and Engineering: A, 607, 44–52. https://doi.org/10.1016/j.msea.2014.03.124
Menapace, C., Sartori, N., Pellizzari, M., & Straffelini, G. (2018). Hot Deformation Behavior of Four Steels: A Comparative Study. Journal of Engineering Materials and Technology, Transactions of the ASME, 140(2), 021006. https://doi.org/10.1115/1.4038670
Milović, L., Vuherer, T., Blačić, I., Vrhovac, M., & Stanković, M. (2013). Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures. Materials and Design, 46, 660–667. https://doi.org/10.1016/j.matdes.2012.10.057
Mirzadeh, H. (2015). Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mechanics of Materials, 85, 66–79. https://doi.org/10.1016/j.mechmat.2015.02.014
Mirzadeh, H., Cabrera, J. M., Prado, J. M., & Najafizadeh, A. (2011). Hot deformation behavior of a medium carbon microalloyed steel. Materials Science and Engineering A, 528(10–11), 3876–3882. https://doi.org/10.1016/j.msea.2011.01.098
Mostafaei, M. A., & Kazeminezhad, M. (2012). The prediction of hot flow behavior of Al-6%Mg alloy. Materials Science and Engineering A, 535, 216–221. https://doi.org/10.1016/j.msea.2011.12.067
Nkhoma, R. C. K. (2014). Hot workability of AISI 321 and AISI 304 austenitic stainless steels. Journal of Alloys and Compounds, 595, 103–112. https://doi.org/10.1016/j.jallcom.2014.01.157
Obiko, J., Chown, L. H., & Whitefield, D. J. (2019). Warm deformation behaviour of P92 steel. Materials Research Express, 6(12). https://doi.org/10.1088/2053-1591/ab5e9c
Ohgami, M., Naoi, H., Kinbara, S., Mimura, H., Ikemoto, T., & Fujita, T. (1997). Development of 9CrW tube, pipe and forging for ultra supercritical power plant boilers. In Nippon Steel Technical Report (Issue 72, pp. 59–64).
Oudin, A., Barnett, M. R., & Hodgson, P. D. (2004). Grain size effect on the warm deformation behaviour of a Ti-IF steel. Materials Science and Engineering A, 367(1–2), 282–294. https://doi.org/10.1016/j.msea.2003.10.273
Qian, L. Y., Fang, G., Zeng, P., & Wang, L. X. (2015). Correction of flow stress and determination of constitutive constants for hot working of API X100 pipeline steel. International Journal of Pressure Vessels and Piping, 132–133(November), 43–51. https://doi.org/10.1016/j.ijpvp.2015.05.008
Rastegari, H., Kermanpur, A., Najafizadeh, A., Porter, D., & Somani, M. (2015). Warm deformation processing maps for the plain eutectoid steels. Journal of Alloys and Compounds, 626, 136–144. https://doi.org/10.1016/j.jallcom.2014.11.170
Sakthivel, T., Selvi, S. P., & Laha, K. (2015). An assessment of creep deformation and rupture behaviour of 9Cr-1.8W-0.5Mo-VNb (ASME grade 92) steel. Materials Science and Engineering A, 640, 61–71. https://doi.org/10.1016/j.msea.2015.05.068
Sakthivel, T., Selvi, S. P., Parameswaran, P., & Laha, K. (2016). Creep deformation and rupture behaviour of thermal aged P92 steel. Materials at High Temperatures, 33(1), 33–43. https://doi.org/10.1179/1878641315Y.0000000016
Samantaray, D., Mandal, S., & Bhaduri, A. K. (2010). Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel. Materials and Design, 31(2), 981–984. https://doi.org/10.1016/j.matdes.2009.08.012
Samantaray, D., Phaniraj, C., Mandal, S., & Bhaduri, A. K. (2011). Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel. Materials Science and Engineering A, 528(3), 1071–1077. https://doi.org/10.1016/j.msea.2010.10.036
Samuel, E. I., Choud, B. K., Palaparti, D. P. R., & Mathew, M. D. (2013). Creep Deformation and Rup pture Behaviour of P92 Steel at 92 23 K. 55, 64–69. https://doi.org/10.1016/j.proeng.2013.03.220
Sellars, C. M., & McTegart, W. J. (1966). On the mechanism of hot deformation. Acta Metallurgica, 14(9), 1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0
Shi, R. X., & Liu, Z. D. (2011). Hot deformation behavior of P92 steel used for ultra-super-critical power plants. Journal of Iron and Steel Research International, 18(7), 53–58. https://doi.org/10.1016/S1006-706X(11)60090-3
Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing Journal, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02.002
Suikkanen, P. P., Lang, V. T. E., Somani, M. C., Porter, D. A., & Karjalainen, L. P. (2012). Effect of Silicon and Aluminium on Austenite Static Recrystallization Kinetics in High-strength TRIP-aided Steels. ISIJ International, 52(3), 471–476. https://doi.org/10.2355/isijinternational.52.471
Sun, S. L., Zhang, M. G., & He, W. W. (2010). Hot deformation behavior and hot processing map of P92 steel. Advanced Materials Research, 97–101, 290–295. https://doi.org/10.4028/www.scientific.net/AMR.97-101.290
Tabuchi, M., Watanabe, T., Kubo, K., Matsui, M., Kinugawa, J., & Abe, F. (2001). Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel. International Journal of Pressure Vessels and Piping, 78(11–12), 779–784. https://doi.org/10.1016/S0308-0161(01)00090-4
Výrostková, A., Homolová, V., Pecha, J., & Svoboda, M. (2008). Phase evolution in P92 and E911 weld metals during ageing. Materials Science and Engineering A, 480(1–2), 289–298. https://doi.org/10.1016/j.msea.2007.07.036
Wan, Z., Hu, L., Sun, Y., Wang, T., & Li, Z. (2018). Hot deformation behavior and processing workability of a Ni-based alloy. Journal of Alloys and Compounds, 769, 367–375. https://doi.org/10.1016/j.jallcom.2018.08.010
Wang, L., Liu, F., Zuo, Q., & Chen, C. F. (2013). Prediction of flow stress for N08028 alloy under hot working conditions. Materials and Design, 47, 737–745. https://doi.org/10.1016/j.matdes.2012.12.074
Wang, M., Jin, P., & Wang, J. (2014). Hot deformation and processing maps of 7005 aluminum alloy. High Temperature Materials and Processes, 33(4), 369–375. https://doi.org/10.1515/htmp-2013-0083
Wang, S., Huang, Y., Xiao, Z., Liu, Y., & Liu, H. (2017). A Modified Johnson-Cook Model for Hot Deformation Behavior of 35CrMo Steel. Metals, 7(9), 337. https://doi.org/10.3390/met7090337
Yan, P., Liu, Z. dong, Liu, W., Bao, H. sheng, & Weng, Y. qing. (2013). Hot deformation behavior of a new 9%Cr heat resistant steel G115. Journal of Iron and Steel Research International, 20(9), 73–79. https://doi.org/10.1016/S1006-706X(13)60159-4
Yang, Z. N., Dai, L. Q., Chu, C. H., Zhang, F. C., Wang, L. W., & Xiao, A. P. (2017). Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel. Journal of Materials Engineering and Performance, 26(12), 5954–5962. https://doi.org/10.1007/s11665-017-3018-7
Yang, Z., Zhang, F., Zheng, C., Zhang, M., Lv, B., & Qu, L. (2015). Study on hot deformation behaviour and processing maps of low carbon bainitic steel. Materials and Design, 66(PA), 258–266. https://doi.org/10.1016/j.matdes.2014.10.068
Yanushkevich, Z., Lugovskaya, A., Belyakov, A., & Kaibyshev, R. (2016). Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science and Engineering A, 667, 279–285. https://doi.org/10.1016/j.msea.2016.05.008
Yatomi, M., Fuji, A., Tabuchi, M., Hasegawa, Y., Kobayashi, K. I., Yokobori, T., & Yokobori, T. (2010). Evaluation of Creep Crack Growth Rate of P92 Welds Using Fracture Mechanics Parameters. Journal of Pressure Vessel Technology, 132(4), 041404. https://doi.org/10.1115/1.4001522
Zhang, P., Yi, C., Chen, G., Qin, H., & Wang, C. (2016). Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy. Metals, 6(7), 161. https://doi.org/10.3390/met6070161
Zhang, X. Z., Wu, X. J., Liu, R., Liu, J., & Yao, M. X. (2017). Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel. Materials Science and Engineering A, 689(February), 345–352. https://doi.org/10.1016/j.msea.2017.02.044
Zhu, L., He, J., & Zhang, Y. (2018). A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Materials Research Express, 5, 1–11.
Zhu, Y. yang, Ning, L. kui, Xin, T. zheng, Liu, E. ze, Tong, J., Tan, Z., Zhou, Y. tao, & Zheng, Z. (2021). Hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel. Journal of Iron and Steel Research International, 28(10), 1291–1304. https://doi.org/10.1007/s42243-021-00584-4
Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, 20(7), 887–897. https://doi.org/10.1016/0001-6160(72)90082-X
Cabrera, J. M., Al Omar, A., Jonas, J. J., & Prado, J. M. (1997). Modeling the flow behavior of a medium carbon microalloyed steel under hot working conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 28(11), 2233–2243. https://doi.org/10.1007/s11661-997-0181-8
Carsí, M., Peñalba, F., Rieiro, I., & Ruano, O. A. (2011). High temperature workability behavior of a modified P92 steel. International Journal of Materials Research, 102(11), 1378–1383. https://doi.org/10.3139/146.110603
Czyrska-filemonowicz, A., Zielińska-lipiec, A., & Ennis, P. J. (2006). Modified 9 % Cr Steels for Advanced Power Generation : Microstructure and Properties. Journal of Achievements in Materials and Manufacturing Engineering, 19(2), 43–48.
David, S. A., Siefert, J. A., & Feng, Z. (2013). Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. In Science and Technology of Welding and Joining (Vol. 18, Issue 8, pp. 631–651). https://doi.org/10.1179/1362171813Y.0000000152
El Wahabi, M., Cabrera, J. M., & Prado, J. M. (2003). Hot working of two AISI 304 steels: A comparative study. Materials Science and Engineering A, 343(1–2), 116–125. https://doi.org/10.1016/S0921-5093(02)00357-X
Ennis, P. J., & Czyrska-Filemonowicz, A. (2003). Recent advances in creep-resistant steels for power plant applications. Sadhana, 28(3–4), 709–730. https://doi.org/10.1007/BF02706455
Ennis, P. J., Zielinska-Lipiec, A., Wachter, O., & Czyrska-Filemonowicz, A. (1997). Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Materialia, 45(12), 4901–4907. https://doi.org/10.1016/S1359-6454(97)00176-6
Evans, R. W., & Scharning, P. J. (2001). Axisymmetric compression test and hot working properties of alloys. Materials Science and Technology, 17(8), 995–1004. https://doi.org/10.1179/026708301101510843
Fedoseeva, A., Dudova, N., & Kaibyshev, R. (2016). Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Materials Science and Engineering A, 654, 1–12. https://doi.org/10.1016/j.msea.2015.12.027
Francis, J. A., Mazur, W., & Bhadeshia, H. K. D. H. (2006). Review Type IV cracking in ferritic power plant steels. Materials Science and Technology, 22(12), 1387–1395. https://doi.org/10.1179/174328406X148778
Funakawa, Y., & Ujiro, T. (2010). Tensile properties of chromium-bearing extra low carbon steel sheets. ISIJ International, 50(10), 1488–1495. https://doi.org/10.2355/isijinternational.50.1488
He, A., Xie, G., Yang, X., Wang, X., & Zhang, H. (2015). A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Computational Materials Science, 98, 64–69. https://doi.org/10.1016/j.commatsci.2014.10.044
He, A., Xie, G., Zhang, H., & Wang, X. (2013). A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Materials and Design, 52, 677–685. https://doi.org/10.1016/j.matdes.2013.06.010
Huang, Y., Wang, S., Xiao, Z., & Liu, H. (2017). Critical Condition of Dynamic Recrystallization in 35CrMo Steel. Metals, 7(5), 161. https://doi.org/10.3390/met7050161
Jha, J. S., Tewari, A., Mishra, S., & Toppo, S. (2017). Constitutive Relations for Ti-6Al-4V Hot Working. Procedia Engineering, 173, 755–762. https://doi.org/10.1016/j.proeng.2016.12.089
Kishor, B., Chaudhari, G. P., & Nath, S. K. (2016). Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map. Journal of Materials Engineering and Performance, 25(7), 2651–2660. https://doi.org/10.1007/s11665-016-2159-4
Kumar, N., Kumar, S., Rajput, S. K., & Nath, S. K. (2017). Modelling of flow stress and prediction of workability by processing map for hot compression of 43CrNi steel. ISIJ International, 57(3), 497–505. https://doi.org/10.2355/isijinternational.ISIJINT-2016-306
Laasraoui, A., & Jonas, J. J. (1991). Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A, 22(7), 1545–1558. https://doi.org/10.1007/BF02667368
Li, N., Zhao, C., Jiang, Z., & Zhang, H. (2019). Flow behavior and processing maps of high-strength low-alloy steel during hot compression. Materials Characterization, 153(October 2018), 224–233. https://doi.org/10.1016/j.matchar.2019.05.009
Li, Y., Ji, H., Li, W., Li, Y., Pei, W., & Liu, J. (2018). Hot deformation characteristics-Constitutive equation and processing maps-of 21-4N Heat- resistant steel. Materials, 12(1). https://doi.org/10.3390/ma12010089
Lin, Y. C., Chen, M. S., & Zhang, J. (2009). Modeling of flow stress of 42CrMo steel under hot compression. Materials Science and Engineering A, 499(1–2), 88–92. https://doi.org/10.1016/j.msea.2007.11.119
Lin, Y. C., Chen, M. S., & Zhong, J. (2008). Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mechanics Research Communications, 35(3), 142–150. https://doi.org/10.1016/j.mechrescom.2007.10.002
Lin, Y. C., Li, L. T., Xia, Y. C., & Jiang, Y. Q. (2013). Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds, 550, 438–445. https://doi.org/10.1016/j.jallcom.2012.10.114
Lin, Y. C., Xia, Y. C., Chen, X. M., & Chen, M. S. (2010). Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Computational Materials Science, 50(1), 227–233. https://doi.org/10.1016/j.commatsci.2010.08.003
Liu, C. Y., Zhang, R. J., & Yan, Y. N. (2011). Hot deformation behaviour and constitutive modelling of P92 heat resistant steel. Materials Science and Technology, 27(8), 1281–1286. https://doi.org/10.1179/026708310X12683158443323
Liu, X. G., Ji, H. P., Guo, H., Jin, M., Guo, B. F., & Gao, L. (2013). Study on hot deformation behaviour of 316LN austenitic stainless steel based on hot processing map. Materials Science and Technology, 29(1), 24–29. https://doi.org/10.1179/1743284712Y.0000000083
Luan, J., Sun, C., Li, X., & Zhang, Q. (2014). Constitutive model for AZ31 magnesium alloy based on isothermal compression test. Materials Science and Technology, 30(2), 211–219. https://doi.org/10.1179/1743284713Y.0000000341
Masuyama, F. (2001). History of power plants and progress in heat resistant steels. In ISIJ International (Vol. 41, Issue 6, pp. 612–625). https://doi.org/10.2355/isijinternational.41.612
McQueen, H. J., & Ryan, N. D. (2002). Constitutive analysis in hot working. Materials Science and Engineering A, 322(1–2), 43–63. https://doi.org/10.1016/S0921-5093(01)01117-0
Medina, S. F., & Hernandez, C. A. (1996). General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Materialia, 44(1), 137–148. https://doi.org/10.1016/1359-6454(95)00151-0
Mehtonen, S. V., Karjalainen, L. P., & Porter, D. a. (2014). Modeling of the high temperature flow behavior of stabilized 12–27wt% Cr ferritic stainless steels. Materials Science and Engineering: A, 607, 44–52. https://doi.org/10.1016/j.msea.2014.03.124
Menapace, C., Sartori, N., Pellizzari, M., & Straffelini, G. (2018). Hot Deformation Behavior of Four Steels: A Comparative Study. Journal of Engineering Materials and Technology, Transactions of the ASME, 140(2), 021006. https://doi.org/10.1115/1.4038670
Milović, L., Vuherer, T., Blačić, I., Vrhovac, M., & Stanković, M. (2013). Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures. Materials and Design, 46, 660–667. https://doi.org/10.1016/j.matdes.2012.10.057
Mirzadeh, H. (2015). Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mechanics of Materials, 85, 66–79. https://doi.org/10.1016/j.mechmat.2015.02.014
Mirzadeh, H., Cabrera, J. M., Prado, J. M., & Najafizadeh, A. (2011). Hot deformation behavior of a medium carbon microalloyed steel. Materials Science and Engineering A, 528(10–11), 3876–3882. https://doi.org/10.1016/j.msea.2011.01.098
Mostafaei, M. A., & Kazeminezhad, M. (2012). The prediction of hot flow behavior of Al-6%Mg alloy. Materials Science and Engineering A, 535, 216–221. https://doi.org/10.1016/j.msea.2011.12.067
Nkhoma, R. C. K. (2014). Hot workability of AISI 321 and AISI 304 austenitic stainless steels. Journal of Alloys and Compounds, 595, 103–112. https://doi.org/10.1016/j.jallcom.2014.01.157
Obiko, J., Chown, L. H., & Whitefield, D. J. (2019). Warm deformation behaviour of P92 steel. Materials Research Express, 6(12). https://doi.org/10.1088/2053-1591/ab5e9c
Ohgami, M., Naoi, H., Kinbara, S., Mimura, H., Ikemoto, T., & Fujita, T. (1997). Development of 9CrW tube, pipe and forging for ultra supercritical power plant boilers. In Nippon Steel Technical Report (Issue 72, pp. 59–64).
Oudin, A., Barnett, M. R., & Hodgson, P. D. (2004). Grain size effect on the warm deformation behaviour of a Ti-IF steel. Materials Science and Engineering A, 367(1–2), 282–294. https://doi.org/10.1016/j.msea.2003.10.273
Qian, L. Y., Fang, G., Zeng, P., & Wang, L. X. (2015). Correction of flow stress and determination of constitutive constants for hot working of API X100 pipeline steel. International Journal of Pressure Vessels and Piping, 132–133(November), 43–51. https://doi.org/10.1016/j.ijpvp.2015.05.008
Rastegari, H., Kermanpur, A., Najafizadeh, A., Porter, D., & Somani, M. (2015). Warm deformation processing maps for the plain eutectoid steels. Journal of Alloys and Compounds, 626, 136–144. https://doi.org/10.1016/j.jallcom.2014.11.170
Sakthivel, T., Selvi, S. P., & Laha, K. (2015). An assessment of creep deformation and rupture behaviour of 9Cr-1.8W-0.5Mo-VNb (ASME grade 92) steel. Materials Science and Engineering A, 640, 61–71. https://doi.org/10.1016/j.msea.2015.05.068
Sakthivel, T., Selvi, S. P., Parameswaran, P., & Laha, K. (2016). Creep deformation and rupture behaviour of thermal aged P92 steel. Materials at High Temperatures, 33(1), 33–43. https://doi.org/10.1179/1878641315Y.0000000016
Samantaray, D., Mandal, S., & Bhaduri, A. K. (2010). Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel. Materials and Design, 31(2), 981–984. https://doi.org/10.1016/j.matdes.2009.08.012
Samantaray, D., Phaniraj, C., Mandal, S., & Bhaduri, A. K. (2011). Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel. Materials Science and Engineering A, 528(3), 1071–1077. https://doi.org/10.1016/j.msea.2010.10.036
Samuel, E. I., Choud, B. K., Palaparti, D. P. R., & Mathew, M. D. (2013). Creep Deformation and Rup pture Behaviour of P92 Steel at 92 23 K. 55, 64–69. https://doi.org/10.1016/j.proeng.2013.03.220
Sellars, C. M., & McTegart, W. J. (1966). On the mechanism of hot deformation. Acta Metallurgica, 14(9), 1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0
Shi, R. X., & Liu, Z. D. (2011). Hot deformation behavior of P92 steel used for ultra-super-critical power plants. Journal of Iron and Steel Research International, 18(7), 53–58. https://doi.org/10.1016/S1006-706X(11)60090-3
Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing Journal, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02.002
Suikkanen, P. P., Lang, V. T. E., Somani, M. C., Porter, D. A., & Karjalainen, L. P. (2012). Effect of Silicon and Aluminium on Austenite Static Recrystallization Kinetics in High-strength TRIP-aided Steels. ISIJ International, 52(3), 471–476. https://doi.org/10.2355/isijinternational.52.471
Sun, S. L., Zhang, M. G., & He, W. W. (2010). Hot deformation behavior and hot processing map of P92 steel. Advanced Materials Research, 97–101, 290–295. https://doi.org/10.4028/www.scientific.net/AMR.97-101.290
Tabuchi, M., Watanabe, T., Kubo, K., Matsui, M., Kinugawa, J., & Abe, F. (2001). Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel. International Journal of Pressure Vessels and Piping, 78(11–12), 779–784. https://doi.org/10.1016/S0308-0161(01)00090-4
Výrostková, A., Homolová, V., Pecha, J., & Svoboda, M. (2008). Phase evolution in P92 and E911 weld metals during ageing. Materials Science and Engineering A, 480(1–2), 289–298. https://doi.org/10.1016/j.msea.2007.07.036
Wan, Z., Hu, L., Sun, Y., Wang, T., & Li, Z. (2018). Hot deformation behavior and processing workability of a Ni-based alloy. Journal of Alloys and Compounds, 769, 367–375. https://doi.org/10.1016/j.jallcom.2018.08.010
Wang, L., Liu, F., Zuo, Q., & Chen, C. F. (2013). Prediction of flow stress for N08028 alloy under hot working conditions. Materials and Design, 47, 737–745. https://doi.org/10.1016/j.matdes.2012.12.074
Wang, M., Jin, P., & Wang, J. (2014). Hot deformation and processing maps of 7005 aluminum alloy. High Temperature Materials and Processes, 33(4), 369–375. https://doi.org/10.1515/htmp-2013-0083
Wang, S., Huang, Y., Xiao, Z., Liu, Y., & Liu, H. (2017). A Modified Johnson-Cook Model for Hot Deformation Behavior of 35CrMo Steel. Metals, 7(9), 337. https://doi.org/10.3390/met7090337
Yan, P., Liu, Z. dong, Liu, W., Bao, H. sheng, & Weng, Y. qing. (2013). Hot deformation behavior of a new 9%Cr heat resistant steel G115. Journal of Iron and Steel Research International, 20(9), 73–79. https://doi.org/10.1016/S1006-706X(13)60159-4
Yang, Z. N., Dai, L. Q., Chu, C. H., Zhang, F. C., Wang, L. W., & Xiao, A. P. (2017). Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel. Journal of Materials Engineering and Performance, 26(12), 5954–5962. https://doi.org/10.1007/s11665-017-3018-7
Yang, Z., Zhang, F., Zheng, C., Zhang, M., Lv, B., & Qu, L. (2015). Study on hot deformation behaviour and processing maps of low carbon bainitic steel. Materials and Design, 66(PA), 258–266. https://doi.org/10.1016/j.matdes.2014.10.068
Yanushkevich, Z., Lugovskaya, A., Belyakov, A., & Kaibyshev, R. (2016). Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science and Engineering A, 667, 279–285. https://doi.org/10.1016/j.msea.2016.05.008
Yatomi, M., Fuji, A., Tabuchi, M., Hasegawa, Y., Kobayashi, K. I., Yokobori, T., & Yokobori, T. (2010). Evaluation of Creep Crack Growth Rate of P92 Welds Using Fracture Mechanics Parameters. Journal of Pressure Vessel Technology, 132(4), 041404. https://doi.org/10.1115/1.4001522
Zhang, P., Yi, C., Chen, G., Qin, H., & Wang, C. (2016). Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy. Metals, 6(7), 161. https://doi.org/10.3390/met6070161
Zhang, X. Z., Wu, X. J., Liu, R., Liu, J., & Yao, M. X. (2017). Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel. Materials Science and Engineering A, 689(February), 345–352. https://doi.org/10.1016/j.msea.2017.02.044
Zhu, L., He, J., & Zhang, Y. (2018). A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Materials Research Express, 5, 1–11.
Zhu, Y. yang, Ning, L. kui, Xin, T. zheng, Liu, E. ze, Tong, J., Tan, Z., Zhou, Y. tao, & Zheng, Z. (2021). Hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel. Journal of Iron and Steel Research International, 28(10), 1291–1304. https://doi.org/10.1007/s42243-021-00584-4