How to cite this paper
Shahbazian, B & Mirsayar, M. (2023). Fracture mechanics of cellular structures: past, present, and future directions.Engineering Solid Mechanics, 11(2), 231-242.
Refrences
Alderson, A., & Alderson, K. (2005). Expanding materials and applications: exploiting auxetic textiles. Technical textiles international, 14(6), 29-34.
Alderson, A., Alderson, K. L., Attard, D., Evans, K. E., Gatt, R., Grima, J. N., Miller, W., Ravirala, N., Smith, C.W., & Zied, K. (2010). Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70(7), 1042-1048.
Aliha, M. R. M., Berto, F., Bahmani, A., & Gallo, P. (2017). Mixed mode I/II fracture investigation of Perspex based on the averaged strain energy density criterion. Physical Mesomechanics, 20(2), 149-156.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2020). Fracture loads prediction of the modified 3D-printed ABS specimens under mixed-mode I/II loading. Engineering Fracture Mechanics, 235, 107181.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts. Theoretical and Applied Fracture Mechanics, 113, 102953.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2022a). Mixed-mode tensile/shear fracture of the additively manufactured components under dynamic and static loads. Engineering Fracture Mechanics, 260, 108185.
Ameri, B., Taheri-Behrooz, F., Majidi, H. R., & Aliha, M. R. M. (2022b). Mixed-mode load bearing estimation of the cracked additively manufactured materials using stress/strain-based models. Rapid Prototyping Journal, (ahead-of-print).
Andrews, E. W., & Gibson, L. J. (2001). The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta materialia, 49(15), 2975-2979.
Arabi, H., Mirsayar, M. M., Samaei, A. T., & Darandeh, M. (2013). Study of characteristic equation of the elastic stress field near bimaterial notches. Strength of Materials, 45(5), 598-606.
Arabnejad Khanoki, S., & Pasini, D. (2012). Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. Journal of biomechanical engineering, 134(3).
Arbabi, H., Bunder, J. E., Samaey, G., Roberts, A. J., & Kevrekidis, I. G. (2020). Linking machine learning with multiscale numerics: data-driven discovery of homogenized equations. Jom, 72(12), 4444-4457.
Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal foams: a design guide. Elsevier.
Askar, A., & Cakmak, A. S. (1968). A structural model of a micropolar continuum. International Journal of Engineering Science, 6(10), 583-589.
Ayatollahi, M. R., & Mirsayar, M. M. (2011). Kinking angles for interface cracks. Procedia Engineering, 10, 325-329.
Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 46(6), 559-632.
Benedetti, M., Du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering: R: Reports, 144, 100606.
Bhate, D., Penick, C. A., Ferry, L. A., & Lee, C. (2019). Classification and selection of cellular materials in mechanical design: Engineering and biomimetic approaches. Designs, 3(1), 19.
Bohidar, S. K., Sharma, R., & Mishra, P. R. (2014). Functionally graded materials: A critical review. International Journal of Research, 1(4), 289-301.
Buhl, T., Pedersen, C. B., & Sigmund, O. (2000). Stiffness design of geometrically nonlinear structures using topology optimization. Structural and Multidisciplinary Optimization, 19(2), 93-104.
Bührig-Polaczek, A., Fleck, C., Speck, T., Schüler, P., Fischer, S. F., Caliaro, M., & Thielen, M. (2016). Biomimetic cellular metals—using hierarchical structuring for energy absorption. Bioinspiration & biomimetics, 11(4), 045002.
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319.
Carstensen, J. V., & Guest, J. K. (2016). Topology optimization of nonlinear cellular materials. In 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (p. 3212).
Chan, N., & Evans, K. E. (1998). Indentation resilience of conventional and auxetic foams. Journal of cellular plastics, 34(3), 231-260.
Chen, J. Y., Huang, Y., & Ortiz, M. (1998). Fracture analysis of cellular materials: a strain gradient model. Journal of the Mechanics and Physics of Solids, 46(5), 789-828.
Chen, W., Tong, L., & Liu, S. (2018). Design of periodic unit cell in cellular materials with extreme properties using topology optimization. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(10), 852-869.
Chen, W., Xia, L., Yang, J., & Huang, X. (2018). Optimal microstructures of elastoplastic cellular materials under various macroscopic strains. Mechanics of Materials, 118, 120-132.
Chen, Y., Liu, X. N., Hu, G. K., Sun, Q. P., & Zheng, Q. S. (2014). Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2165), 20130734.
Cherkaev, E., Guenneau, S., & Wellander, N. (2018). Inverse homogenization of a quasiperiodic composite. In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (pp. 433-435). IEEE.
Cho, Y., Shin, J. H., Costa, A., Kim, T. A., Kunin, V., Li, J., Lee, S.Y., Yang, S., Han, H.N., Choi, I.S., & Srolovitz, D. J. (2014). Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences, 111(49), 17390-17395.
Cioranescu, D., & Donato, P. (1999). An introduction to homogenization (Vol. 17, pp. x+-262). Oxford: Oxford university press.
Cisse, C., Zaki, W., & Zineb, T. B. (2016). A review of constitutive models and modeling techniques for shape memory alloys. International Journal of Plasticity, 76, 244-284.
Coelho, P. G., Amiano, L. D., Guedes, J. M., & Rodrigues, H. C. (2016). Scale-size effects analysis of optimal periodic material microstructures designed by the inverse homogenization method. Computers & Structures, 174, 21-32.
Coenen, V. L., & Alderson, K. L. (2011). Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Physica status solidi (b), 248(1), 66-72.
Düster, A., Sehlhorst, H. G., & Rank, E. (2012). Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Computational Mechanics, 50(4), 413-431.
Evans, A. G., Hutchinson, J. W., & Ashby, M. F. (1998). Multifunctionality of cellular metal systems. Progress in materials science, 43(3), 171-221.
Evans, K. E., & Alderson, A. (2000). Auxetic materials: functional materials and structures from lateral thinking!. Advanced materials, 12(9), 617-628.
Evans, K. E., Nkansah, M. A., Hutchinson, I. J., & Rogers, S. C. (1991). Molecular network design. Nature, 353(6340), 124-124.
Exerowa, D., & Kruglyakov, P. M. (1997). Foam and foam films: theory, experiment, application. Elsevier.
Férey, G. (2008). Hybrid porous solids: past, present, future. Chemical Society Reviews, 37(1), 191-214.
Ferro, N., Micheletti, S., & Perotto, S. (2020). Density-based inverse homogenization with anisotropically adapted elements. In Numerical methods for flows (pp. 211-221). Springer, Cham.
Finnegan, K., Kooistra, G., Wadley, H. N., & Deshpande, V. S. (2007). The compressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research, 98(12), 1264-1272.
Fleck, N. A., & Qiu, X. (2007). The damage tolerance of elastic–brittle, two-dimensional isotropic lattices. Journal of the Mechanics and Physics of Solids, 55(3), 562-588.
Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials science, 46(3-4), 273-282.
Fuganti, A., Lorenzi, L., Grønsund, A., & Langseth, M. (2000). Aluminum foam for automotive applications. Advanced Engineering Materials, 2(4), 200-204.
Gad, A. I., & Gao, X. L. (2021). A Generalized Strain Energy-Based Homogenization Method for 2-D and 3-D Cellular Materials with and without Periodicity Constraints. Symmetry, 13(10), 1870.
Gad, A. I., Gao, X. L., & Li, K. (2021). A strain energy-based homogenization method for 2-D and 3-D cellular materials using the micropolar elasticity theory. Composite Structures, 265, 113594.
Gandy, P. J., Cvijović, D., Mackay, A. L., & Klinowski, J. (1999). Exact computation of the triply periodic D (diamond') minimal surface. Chemical physics letters, 314(5-6), 543-551.
Gibson, L. J., & Ashby, M. F. (1982). The mechanics of three-dimensional cellular materials. Proceedings of the royal society of London. A. Mathematical and physical sciences, 382(1782), 43-59.
Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: structure and properties. Cambridge University Press, Cambridge, UK.
Gibson, L. J., Ashby, M. F., Schajer, G. S., & Robertson, C. I. (1982). The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782), 25-42.
Gibson, L. J., Ashby, M. F., Zhang, J., & Triantafillou, T. C. (1989). Failure surfaces for cellular materials under multiaxial loads—I. Modelling. International Journal of Mechanical Sciences, 31(9), 635-663.
Grima, J. N., & Evans, K. E. (2000). Auxetic behavior from rotating squares.
Grima, J. N., Alderson, A., & Evans, K. E. (2005). Auxetic behaviour from rotating rigid units. Physica status solidi (b), 242(3), 561-575.
Grima, J. N., Zammit, V., Gatt, R., Alderson, A., & Evans, K. E. (2007). Auxetic behaviour from rotating semi‐rigid units. Physica status solidi (b), 244(3), 866-882.
Gu, H., Shterenlikht, A., & Pavier, M. (2019). Brittle fracture of three-dimensional lattice structure. Engineering Fracture Mechanics, 219, 106598.
Habibi, M. K., Samaei, A. T., Gheshlaghi, B., Lu, J., & Lu, Y. (2015). Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms. Acta biomaterialia, 16, 178-186.
Hang, X., He, S., Dong, Z., Minnick, G., Rosenbohm, J., Chen, Z., ... & Chang, L. (2021). Nanosensors for single cell mechanical interrogation. Biosensors and Bioelectronics, 179, 113086.
Hassani, B., & Hinton, E. (1998). A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Computers & Structures, 69(6), 707-717.
He, S. Y., Zhang, Y., Dai, G., & Jiang, J. Q. (2014). Preparation of density-graded aluminum foam. Materials Science and Engineering: A, 618, 496-499.
Heo, H., Ju, J., & Kim, D. M. (2013). Compliant cellular structures: application to a passive morphing airfoil. Composite Structures, 106, 560-569.
Hohe, J., & Becker, W. (1999). Determination of the elasticity tensor of non-orthotropic cellular sandwich cores. Technische Mechanik-European Journal of Engineering Mechanics, 19(4), 259-268.
Huang, J. S., & Lin, J. Y. (1996). Mixed-mode fracture of brittle cellular materials. Journal of materials science, 31(10), 2647-2652.
Huang, P., Wu, F., Shen, B., Zheng, H., Ren, Q., Luo, H., & Zheng, W. (2020). Biomimetic porous polypropylene foams with special wettability properties. Composites Part B: Engineering, 190, 107927.
Huang, X., Zhou, S. W., Xie, Y. M., & Li, Q. (2013). Topology optimization of microstructures of cellular materials and composites for macrostructures. Computational Materials Science, 67, 397-407.
Huang, Z., Chen, H., Huang, Y., Ge, Z., Zhou, Y., Yang, Y., ... & Chen, Y. (2018). Ultra‐broadband wide‐angle terahertz absorption properties of 3D graphene foam. Advanced functional materials, 28(2), 1704363.
Iltchev, A., Marcadon, V., Kruch, S., & Forest, S. (2015). Computational homogenisation of periodic cellular materials: application to structural modelling. International Journal of Mechanical Sciences, 93, 240-255.
Imbalzano, G., Tran, P., Ngo, T. D., & Lee, P. V. (2016). A numerical study of auxetic composite panels under blast loadings. Composite Structures, 135, 339-352.
Imbalzano, G., Tran, P., Ngo, T. D., & Lee, P. V. (2017). Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. Journal of Sandwich Structures & Materials, 19(3), 291-316.
Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441(7094), 727-730.
Ju, J., & Summers, J. D. (2011). Hyperelastic constitutive modeling of hexagonal honeycombs subjected to in-plane shear loading. Journal of engineering materials and technology, 133(1).
Kafshgar, A. R., Rostami, S., Aliha, M. R. M., & Berto, F. (2021). Optimization of properties for 3d printed pla material using taguchi, anova and multi-objective methodologies. Procedia Structural Integrity, 34, 71-77.
Knoppers, G. E., Gunnink, J. W., Van Den Hout, J., & Van Vliet, W. (2005, December). The reality of functionally graded material products. In Intelligent Production Machines and Systems: First I* PROMS Virtual Conference, Elsevier, Amsterdam (pp. 467-474).
Körner, C., & Liebold-Ribeiro, Y. (2014). A systematic approach to identify cellular auxetic materials. Smart Materials and Structures, 24(2), 025013.
Krödel, S., Delpero, T., Bergamini, A., Ermanni, P., & Kochmann, D. M. (2014). 3 D Auxetic Microlattices with Independently Controllable Acoustic Band Gaps and Quasi‐S tatic Elastic Moduli. Advanced Engineering Materials, 16(4), 357-363.
Kuhn, C., & Müller, R. (2010). A continuum phase field model for fracture. Engineering Fracture Mechanics, 77(18), 3625-3634.
Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of microelectromechanical systems, 6(2), 99-106.
Lees, C., Vincent, J. F., & Hillerton, J. E. (1991). Poisson's ratio in skin. Bio-medical materials and engineering, 1(1), 19-23.
Li, D., Dai, N., Tang, Y., Dong, G., & Zhao, Y. F. (2019). Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes. Journal of Mechanical Design, 141(7).
Li, D., Liao, W., Dai, N., Dong, G., Tang, Y., & Xie, Y. M. (2018). Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Computer-Aided Design, 104, 87-99.
Li, W., & Han, B. (2018). Research and application of functionally gradient materials. In IOP conference series: materials science and engineering (Vol. 394, No. 2, p. 022065). IOP Publishing.
Liu, J., Pattofatto, S., Fang, D., Lu, F., & Zhao, H. (2015). Impact strength enhancement of aluminum tetrahedral lattice truss core structures. International Journal of Impact Engineering, 79, 3-13.
Liu, K., & Tovar, A. (2013). Multiscale topology optimization of structures and periodic cellular materials. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 55881, p. V03AT03A054). American Society of Mechanical Engineers.
Liu, Q., Gao, S., Zhao, Y., Tao, W., Yu, X., & Zhi, M. (2021). Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. Journal of Materials Science, 56(16), 9605-9643.
Liu, Z., Meyers, M. A., Zhang, Z., & Ritchie, R. O. (2017). Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 88, 467-498.
Lu, Y., & Tong, L. (2021). Concurrent topology optimization of cellular structures and anisotropic materials. Computers & Structures, 255, 106624.
Ma, Z. D. (2016). Homogenization method for designing novel architectured cellular materials. In VII European Congress on Computational Methods in Applied Sciences and Engineering, Grete Island, Greece.
Masters, I. G., & Evans, K. E. (1996). Models for the elastic deformation of honeycombs. Composite structures, 35(4), 403-422.
Michielsen, K., & Stavenga, D. G. (2008). Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. Journal of The Royal Society Interface, 5(18), 85-94.
Milton, G. W. (1992). Composite materials with Poisson's ratios close to—1. Journal of the Mechanics and Physics of Solids, 40(5), 1105-1137.
Mirsayar, M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics, 1(4), 149-153.
Mirsayar, M. (2022b). A generalized model for dynamic mixed‐mode fracture via state‐based peridynamics. Fatigue & Fracture of Engineering Materials & Structures.
Mirsayar, M. M. (2014). On fracture of kinked interface cracks–The role of T-stress. Materials & Design, 61, 117-123.
Mirsayar, M. M. (2015). Mixed mode fracture analysis using extended maximum tangential strain criterion. Materials & Design, 86, 941-947.
Mirsayar, M. M. (2017). On the low temperature mixed mode fracture analysis of asphalt binder–Theories and experiments. Engineering fracture mechanics, 186, 181-194.
Mirsayar, M. M. (2018). On fracture analysis of dental restorative materials under combined tensile-shear loading. Theoretical and Applied Fracture Mechanics, 93, 170-176.
Mirsayar, M. M. (2019). T-strain effects in kinked interfacial fracture of bonded composites. Theoretical and Applied Fracture Mechanics, 104, 102381.
Mirsayar, M. M. (2021a). A generalized criterion for fatigue crack growth in additively manufactured materials–Build orientation and geometry effects. International Journal of Fatigue, 145, 106099.
Mirsayar, M. M. (2021b). A combined stress/energy-based criterion for mixed-mode fracture of laminated composites considering fiber bridging micromechanics. International Journal of Mechanical Sciences, 197, 106319.
Mirsayar, M. M. (2021c). On the effective critical distances in three-dimensional brittle fracture via a strain-based framework. Engineering Fracture Mechanics, 248, 107740.
Mirsayar, M. M. (2022a). On brittle fracture of two‐dimensional lattices with material anisotropies. Fatigue & Fracture of Engineering Materials & Structures, 45(7), 1929-1941.
Mirsayar, M. M., & Hartl, D. J. (2019). On the cracks normal to shape memory alloy/elastic material interfaces. Engineering Fracture Mechanics, 216, 106509.
Mirsayar, M. M., & Hartl, D. J. (2020). Damage detection via embedded sensory particles–effect of particle/matrix interphase properties. Composite Structures, 232, 111536.
Mirsayar, M. M., & Park, P. (2015). The role of T-stress on kinking angle of interface cracks. Materials & Design, 80, 12-19.
Mirsayar, M. M., & Park, P. (2016a). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the mechanical behavior of biomedical materials, 59, 236-240.
Mirsayar, M. M., & Park, P. (2016b). Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria. Theoretical and Applied Fracture Mechanics, 86, 233-238.
Mirsayar, M. M., & Shahbazian, B. (2022). An energy-based criterion for mixed-mode I/II/III fracture considering effective critical distances. Engineering Fracture Mechanics, 272, 108674.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering fracture mechanics, 119, 124-131.
Mirsayar, M. M., Razmi, A., & Berto, F. (2018b). Tangential strain‐based criteria for mixed‐mode I/II fracture toughness of cement concrete. Fatigue & Fracture of Engineering Materials & Structures, 41(1), 129-137.
Mirsayar, M. M., Razmi, A., Aliha, M. R. M., & Berto, F. (2018a). EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Engineering Fracture Mechanics, 190, 186-197.
Moongkhamklang, P., Elzey, D. M., & Wadley, H. N. (2008). Titanium matrix composite lattice structures. Composites Part A: applied science and manufacturing, 39(2), 176-187.
Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., Machado, B. I., ... & Bracke, J. (2010). Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1917), 1999-2032.
Muto, K., Bailey, R. W., & Mitchell, K. J. (1963). Nominated lecture: Special requirements for the design of nuclear power stations to withstand earthquakes. Proceedings of the Institution of Mechanical Engineers, 177(1), 155-203.
Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied materials today, 5, 223-245.
Najmon, J. C., Jacob, D. J., Wood, Z. M., & Tovar, A. (2018). Cellular helmet liner design through bio-inspired structures and topology optimization of compliant mechanism lattices. SAE International journal of transportation safety, 6(3), 217-236.
Naleway, S. E., Porter, M. M., McKittrick, J., & Meyers, M. A. (2015). Structural design elements in biological materials: application to bioinspiration. Advanced materials, 27(37), 5455-5476.
Novak, N., Vesenjak, M., & Ren, Z. (2016). Auxetic cellular materials-a review. Strojniški vestnik-Journal of Mechanical Engineering, 62(9), 485-493.
Novitskaya, E., Chen, P. Y., Lee, S., Castro-Ceseña, A., Hirata, G., Lubarda, V. A., & McKittrick, J. (2011). Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 7(8), 3170-3177.
Phani, A. S., Woodhouse, J., & Fleck, N. A. (2006). Wave propagation in two-dimensional periodic lattices. The Journal of the Acoustical Society of America, 119(4), 1995-2005.
Prabhu, S., Raja, V. K., & Nikhil, R. (2015). Applications of cellular materials–an overview. Applied Mechanics and Materials, 766, 511-517.
Prall, D., & Lakes, R. S. (1997). Properties of a chiral honeycomb with a Poisson's ratio of—1. International Journal of Mechanical Sciences, 39(3), 305-314.
Qian, Z., Schlangen, E., Ye, G., & van Breugel, K. (2011). 3D lattice fracture model: theory and computer implementation. In Key Engineering Materials (Vol. 452, pp. 69-72). Trans Tech Publications Ltd.
Qiao, H., Wang, S., Zhao, T., & Tang, H. (2019). Topology optimization for lightweight cellular material and structure simultaneously by combining SIMP with BESO. Journal of Mechanical Science and Technology, 33(2), 729-739.
Radman, A., Huang, X., & Xie, Y. M. (2013a). Topological optimization for the design of microstructures of isotropic cellular materials. Engineering optimization, 45(11), 1331-1348.
Radman, A., Huang, X., & Xie, Y. M. (2013b). Topology optimization of functionally graded cellular materials. Journal of Materials Science, 48(4), 1503-1510.
Rahman, O., Uddin, K. Z., Muthulingam, J., Youssef, G., Shen, C., & Koohbor, B. (2022). Density‐Graded Cellular Solids: Mechanics, Fabrication, and Applications. Advanced Engineering Materials, 24(1), 2100646.
Raja, V. B., & Prabhu, S. (2013, July). Processing of cellular materials—An overview. In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (pp. 631-633). IEEE.
Ritchie, R. O., Buehler, M. J., & Hansma, P. (2009). Plasticity and toughness in bone.
Robert, F. (1985). An isotropic three-dimensional structure with Poisson’s ratio=− 1. J. Elast, 15, 427-430.
Salimon, A., Brechet, Y., Ashby, M. F., & Greer, A. L. (2005). Potential applications for steel and titanium metal foams. Journal of materials science, 40(22), 5793-5799.
Sanami, M., Ravirala, N., Alderson, K., & Alderson, A. (2014). Auxetic materials for sports applications. Procedia Engineering, 72, 453-458.
Scarpa, F. (2008). Auxetic materials for bioprostheses [In the Spotlight]. IEEE Signal Processing Magazine, 25(5), 128-126.
Scarpa, F., Ciffo, L. G., & Yates, J. R. (2003). Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 13(1), 49.
Schaedler, T. A., & Carter, W. B. (2016). Architected cellular materials. Annual Review of Materials Research, 46, 187-210.
Shahbazian, B., Mirsayar, M. M., Aliha, M. R. M., Darvish, M. G., Asadi, M. M., & Haghighatpour, P. J. (2022). Experimental and theoretical investigation of mixed-mode I/II and I/III fracture behavior of PUR foams using a novel strain-based criterion. International Journal of Solids and Structures, 111996.
Shan, S., Kang, S. H., Zhao, Z., Fang, L., & Bertoldi, K. (2015). Design of planar isotropic negative Poisson’s ratio structures. Extreme Mechanics Letters, 4, 96-102.
Sigmund, O. (1994). Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 31(17), 2313-2329.
Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1-10.
Smith, C. W., Grima, J. N., & Evans, K. (2000). A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta materialia, 48(17), 4349-4356.
Somnic, J., & Jo, B. W. (2022). Homogenization Methods of Lattice Materials. Encyclopedia, 2(2), 1091-1102.
Srivastava, V. C., & Sahoo, K. L. (2007). Processing, stabilization and applications of metallic foams. Art of science. Materials Science-Poland, 25(3), 733-753.
Staszak, N., Garbowski, T., & Szymczak-Graczyk, A. (2021). Solid Truss to Shell Numerical Homogenization of Prefabricated Composite Slabs. Materials, 14(15), 4120.
Steinmetz, D. R., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed–Akbari, A., ... & Raabe, D. (2013). Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Materialia, 61(2), 494-510.
Theocaris, P. S., Stavroulakis, G. E., & Panagiotopoulos, P. D. (1997). Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach. Archive of Applied Mechanics, 67(4), 274-286.
Torabi, A. R., & Shahbazian, B. (2020a). Notch tip plastic zone determination by extending Irwin’s model. Theoretical and applied fracture mechanics, 108, 102643.
Torabi, A. R., & Shahbazian, B. (2020b). Semi-analytical estimation of the effective plastic zone size at U-notch neighborhood in thin sheets under mixed mode I/II loading. Engineering Fracture Mechanics, 239, 107323.
Torabi, A. R., Hamidi, K., & Shahbazian, B. (2021b). Compressive fracture analysis of U-notched specimens made of porous graphite reinforced by aluminum particles. Diamond and Related Materials, 120, 108613.
Torabi, A. R., Shahbazian, B., Mirsayar, M., & Cicero, S. (2021a). A Methodology to Determine the Effective Plastic Zone Size Around Blunt V-Notches under Mixed Mode I/II Loading and Plane-Stress Conditions. Metals, 11(7), 1042.
Triantafillou, T. C., & Gibson, L. J. (1990). Constitutive modeling of elastic-plastic open-cell foams. Journal of engineering mechanics, 116(12), 2772-2778.
Triantafillou, T. C., Zhang, J., Shercliff, T. L., Gibson, L. J., & Ashby, M. F. (1989). Failure surfaces for cellular materials under multiaxial loads—II. Comparison of models with experiment. International Journal of Mechanical Sciences, 31(9), 665-678.
Vashisth, A., & Mirsayar, M. M. (2020). A combined atomistic-continuum study on the temperature effects on interfacial fracture in SiC/SiO2 composites. Theoretical and Applied Fracture Mechanics, 105, 102399.
Vigliotti, A., Deshpande, V. S., & Pasini, D. (2014). Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids, 64, 44-60.
Voigt, W. (1928). Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), edited by bg teubner and jw edwards, leipzig berlin. Ann Arbor, Mich.
Wang, Y., Zhang, L., Daynes, S., Zhang, H., Feih, S., & Wang, M. Y. (2018). Design of graded lattice structure with optimized mesostructures for additive manufacturing. Materials & Design, 142, 114-123.
Wang, Z., & Hu, H. (2014). Auxetic materials and their potential applications in textiles. Textile Research Journal, 84(15), 1600-1611.
Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature materials, 14(1), 23-36.
Wei, K., Yang, Q., Ling, B., Xie, H., Qu, Z., & Fang, D. (2018). Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting. Extreme Mechanics Letters, 23, 41-48.
Xu, Y., Zhang, H., Šavija, B., Figueiredo, S. C., & Schlangen, E. (2019). Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Materials & Design, 162, 143-153.
Yang, S., Qi, C., Wang, D., Gao, R., Hu, H., & Shu, J. (2013). A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores. Advances in Mechanical Engineering, 5, 589216.
Yang, W., Li, Z. M., Shi, W., Xie, B. H., & Yang, M. B. (2004). Review on auxetic materials. Journal of materials science, 39(10), 3269-3279.
Yeganeh-Haeri, A., Weidner, D. J., & Parise, J. B. (1992). Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson's ratio. Science, 257(5070), 650-652.
Zhang, W., & Sun, S. (2006). Scale‐related topology optimization of cellular materials and structures. International Journal for numerical methods in Engineering, 68(9), 993-1011.
Alderson, A., Alderson, K. L., Attard, D., Evans, K. E., Gatt, R., Grima, J. N., Miller, W., Ravirala, N., Smith, C.W., & Zied, K. (2010). Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 70(7), 1042-1048.
Aliha, M. R. M., Berto, F., Bahmani, A., & Gallo, P. (2017). Mixed mode I/II fracture investigation of Perspex based on the averaged strain energy density criterion. Physical Mesomechanics, 20(2), 149-156.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2020). Fracture loads prediction of the modified 3D-printed ABS specimens under mixed-mode I/II loading. Engineering Fracture Mechanics, 235, 107181.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts. Theoretical and Applied Fracture Mechanics, 113, 102953.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2022a). Mixed-mode tensile/shear fracture of the additively manufactured components under dynamic and static loads. Engineering Fracture Mechanics, 260, 108185.
Ameri, B., Taheri-Behrooz, F., Majidi, H. R., & Aliha, M. R. M. (2022b). Mixed-mode load bearing estimation of the cracked additively manufactured materials using stress/strain-based models. Rapid Prototyping Journal, (ahead-of-print).
Andrews, E. W., & Gibson, L. J. (2001). The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta materialia, 49(15), 2975-2979.
Arabi, H., Mirsayar, M. M., Samaei, A. T., & Darandeh, M. (2013). Study of characteristic equation of the elastic stress field near bimaterial notches. Strength of Materials, 45(5), 598-606.
Arabnejad Khanoki, S., & Pasini, D. (2012). Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. Journal of biomechanical engineering, 134(3).
Arbabi, H., Bunder, J. E., Samaey, G., Roberts, A. J., & Kevrekidis, I. G. (2020). Linking machine learning with multiscale numerics: data-driven discovery of homogenized equations. Jom, 72(12), 4444-4457.
Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal foams: a design guide. Elsevier.
Askar, A., & Cakmak, A. S. (1968). A structural model of a micropolar continuum. International Journal of Engineering Science, 6(10), 583-589.
Ayatollahi, M. R., & Mirsayar, M. M. (2011). Kinking angles for interface cracks. Procedia Engineering, 10, 325-329.
Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 46(6), 559-632.
Benedetti, M., Du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering: R: Reports, 144, 100606.
Bhate, D., Penick, C. A., Ferry, L. A., & Lee, C. (2019). Classification and selection of cellular materials in mechanical design: Engineering and biomimetic approaches. Designs, 3(1), 19.
Bohidar, S. K., Sharma, R., & Mishra, P. R. (2014). Functionally graded materials: A critical review. International Journal of Research, 1(4), 289-301.
Buhl, T., Pedersen, C. B., & Sigmund, O. (2000). Stiffness design of geometrically nonlinear structures using topology optimization. Structural and Multidisciplinary Optimization, 19(2), 93-104.
Bührig-Polaczek, A., Fleck, C., Speck, T., Schüler, P., Fischer, S. F., Caliaro, M., & Thielen, M. (2016). Biomimetic cellular metals—using hierarchical structuring for energy absorption. Bioinspiration & biomimetics, 11(4), 045002.
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319.
Carstensen, J. V., & Guest, J. K. (2016). Topology optimization of nonlinear cellular materials. In 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (p. 3212).
Chan, N., & Evans, K. E. (1998). Indentation resilience of conventional and auxetic foams. Journal of cellular plastics, 34(3), 231-260.
Chen, J. Y., Huang, Y., & Ortiz, M. (1998). Fracture analysis of cellular materials: a strain gradient model. Journal of the Mechanics and Physics of Solids, 46(5), 789-828.
Chen, W., Tong, L., & Liu, S. (2018). Design of periodic unit cell in cellular materials with extreme properties using topology optimization. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(10), 852-869.
Chen, W., Xia, L., Yang, J., & Huang, X. (2018). Optimal microstructures of elastoplastic cellular materials under various macroscopic strains. Mechanics of Materials, 118, 120-132.
Chen, Y., Liu, X. N., Hu, G. K., Sun, Q. P., & Zheng, Q. S. (2014). Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2165), 20130734.
Cherkaev, E., Guenneau, S., & Wellander, N. (2018). Inverse homogenization of a quasiperiodic composite. In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (pp. 433-435). IEEE.
Cho, Y., Shin, J. H., Costa, A., Kim, T. A., Kunin, V., Li, J., Lee, S.Y., Yang, S., Han, H.N., Choi, I.S., & Srolovitz, D. J. (2014). Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences, 111(49), 17390-17395.
Cioranescu, D., & Donato, P. (1999). An introduction to homogenization (Vol. 17, pp. x+-262). Oxford: Oxford university press.
Cisse, C., Zaki, W., & Zineb, T. B. (2016). A review of constitutive models and modeling techniques for shape memory alloys. International Journal of Plasticity, 76, 244-284.
Coelho, P. G., Amiano, L. D., Guedes, J. M., & Rodrigues, H. C. (2016). Scale-size effects analysis of optimal periodic material microstructures designed by the inverse homogenization method. Computers & Structures, 174, 21-32.
Coenen, V. L., & Alderson, K. L. (2011). Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Physica status solidi (b), 248(1), 66-72.
Düster, A., Sehlhorst, H. G., & Rank, E. (2012). Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Computational Mechanics, 50(4), 413-431.
Evans, A. G., Hutchinson, J. W., & Ashby, M. F. (1998). Multifunctionality of cellular metal systems. Progress in materials science, 43(3), 171-221.
Evans, K. E., & Alderson, A. (2000). Auxetic materials: functional materials and structures from lateral thinking!. Advanced materials, 12(9), 617-628.
Evans, K. E., Nkansah, M. A., Hutchinson, I. J., & Rogers, S. C. (1991). Molecular network design. Nature, 353(6340), 124-124.
Exerowa, D., & Kruglyakov, P. M. (1997). Foam and foam films: theory, experiment, application. Elsevier.
Férey, G. (2008). Hybrid porous solids: past, present, future. Chemical Society Reviews, 37(1), 191-214.
Ferro, N., Micheletti, S., & Perotto, S. (2020). Density-based inverse homogenization with anisotropically adapted elements. In Numerical methods for flows (pp. 211-221). Springer, Cham.
Finnegan, K., Kooistra, G., Wadley, H. N., & Deshpande, V. S. (2007). The compressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research, 98(12), 1264-1272.
Fleck, N. A., & Qiu, X. (2007). The damage tolerance of elastic–brittle, two-dimensional isotropic lattices. Journal of the Mechanics and Physics of Solids, 55(3), 562-588.
Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials science, 46(3-4), 273-282.
Fuganti, A., Lorenzi, L., Grønsund, A., & Langseth, M. (2000). Aluminum foam for automotive applications. Advanced Engineering Materials, 2(4), 200-204.
Gad, A. I., & Gao, X. L. (2021). A Generalized Strain Energy-Based Homogenization Method for 2-D and 3-D Cellular Materials with and without Periodicity Constraints. Symmetry, 13(10), 1870.
Gad, A. I., Gao, X. L., & Li, K. (2021). A strain energy-based homogenization method for 2-D and 3-D cellular materials using the micropolar elasticity theory. Composite Structures, 265, 113594.
Gandy, P. J., Cvijović, D., Mackay, A. L., & Klinowski, J. (1999). Exact computation of the triply periodic D (diamond') minimal surface. Chemical physics letters, 314(5-6), 543-551.
Gibson, L. J., & Ashby, M. F. (1982). The mechanics of three-dimensional cellular materials. Proceedings of the royal society of London. A. Mathematical and physical sciences, 382(1782), 43-59.
Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: structure and properties. Cambridge University Press, Cambridge, UK.
Gibson, L. J., Ashby, M. F., Schajer, G. S., & Robertson, C. I. (1982). The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782), 25-42.
Gibson, L. J., Ashby, M. F., Zhang, J., & Triantafillou, T. C. (1989). Failure surfaces for cellular materials under multiaxial loads—I. Modelling. International Journal of Mechanical Sciences, 31(9), 635-663.
Grima, J. N., & Evans, K. E. (2000). Auxetic behavior from rotating squares.
Grima, J. N., Alderson, A., & Evans, K. E. (2005). Auxetic behaviour from rotating rigid units. Physica status solidi (b), 242(3), 561-575.
Grima, J. N., Zammit, V., Gatt, R., Alderson, A., & Evans, K. E. (2007). Auxetic behaviour from rotating semi‐rigid units. Physica status solidi (b), 244(3), 866-882.
Gu, H., Shterenlikht, A., & Pavier, M. (2019). Brittle fracture of three-dimensional lattice structure. Engineering Fracture Mechanics, 219, 106598.
Habibi, M. K., Samaei, A. T., Gheshlaghi, B., Lu, J., & Lu, Y. (2015). Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms. Acta biomaterialia, 16, 178-186.
Hang, X., He, S., Dong, Z., Minnick, G., Rosenbohm, J., Chen, Z., ... & Chang, L. (2021). Nanosensors for single cell mechanical interrogation. Biosensors and Bioelectronics, 179, 113086.
Hassani, B., & Hinton, E. (1998). A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Computers & Structures, 69(6), 707-717.
He, S. Y., Zhang, Y., Dai, G., & Jiang, J. Q. (2014). Preparation of density-graded aluminum foam. Materials Science and Engineering: A, 618, 496-499.
Heo, H., Ju, J., & Kim, D. M. (2013). Compliant cellular structures: application to a passive morphing airfoil. Composite Structures, 106, 560-569.
Hohe, J., & Becker, W. (1999). Determination of the elasticity tensor of non-orthotropic cellular sandwich cores. Technische Mechanik-European Journal of Engineering Mechanics, 19(4), 259-268.
Huang, J. S., & Lin, J. Y. (1996). Mixed-mode fracture of brittle cellular materials. Journal of materials science, 31(10), 2647-2652.
Huang, P., Wu, F., Shen, B., Zheng, H., Ren, Q., Luo, H., & Zheng, W. (2020). Biomimetic porous polypropylene foams with special wettability properties. Composites Part B: Engineering, 190, 107927.
Huang, X., Zhou, S. W., Xie, Y. M., & Li, Q. (2013). Topology optimization of microstructures of cellular materials and composites for macrostructures. Computational Materials Science, 67, 397-407.
Huang, Z., Chen, H., Huang, Y., Ge, Z., Zhou, Y., Yang, Y., ... & Chen, Y. (2018). Ultra‐broadband wide‐angle terahertz absorption properties of 3D graphene foam. Advanced functional materials, 28(2), 1704363.
Iltchev, A., Marcadon, V., Kruch, S., & Forest, S. (2015). Computational homogenisation of periodic cellular materials: application to structural modelling. International Journal of Mechanical Sciences, 93, 240-255.
Imbalzano, G., Tran, P., Ngo, T. D., & Lee, P. V. (2016). A numerical study of auxetic composite panels under blast loadings. Composite Structures, 135, 339-352.
Imbalzano, G., Tran, P., Ngo, T. D., & Lee, P. V. (2017). Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. Journal of Sandwich Structures & Materials, 19(3), 291-316.
Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive law for dense granular flows. Nature, 441(7094), 727-730.
Ju, J., & Summers, J. D. (2011). Hyperelastic constitutive modeling of hexagonal honeycombs subjected to in-plane shear loading. Journal of engineering materials and technology, 133(1).
Kafshgar, A. R., Rostami, S., Aliha, M. R. M., & Berto, F. (2021). Optimization of properties for 3d printed pla material using taguchi, anova and multi-objective methodologies. Procedia Structural Integrity, 34, 71-77.
Knoppers, G. E., Gunnink, J. W., Van Den Hout, J., & Van Vliet, W. (2005, December). The reality of functionally graded material products. In Intelligent Production Machines and Systems: First I* PROMS Virtual Conference, Elsevier, Amsterdam (pp. 467-474).
Körner, C., & Liebold-Ribeiro, Y. (2014). A systematic approach to identify cellular auxetic materials. Smart Materials and Structures, 24(2), 025013.
Krödel, S., Delpero, T., Bergamini, A., Ermanni, P., & Kochmann, D. M. (2014). 3 D Auxetic Microlattices with Independently Controllable Acoustic Band Gaps and Quasi‐S tatic Elastic Moduli. Advanced Engineering Materials, 16(4), 357-363.
Kuhn, C., & Müller, R. (2010). A continuum phase field model for fracture. Engineering Fracture Mechanics, 77(18), 3625-3634.
Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of microelectromechanical systems, 6(2), 99-106.
Lees, C., Vincent, J. F., & Hillerton, J. E. (1991). Poisson's ratio in skin. Bio-medical materials and engineering, 1(1), 19-23.
Li, D., Dai, N., Tang, Y., Dong, G., & Zhao, Y. F. (2019). Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes. Journal of Mechanical Design, 141(7).
Li, D., Liao, W., Dai, N., Dong, G., Tang, Y., & Xie, Y. M. (2018). Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Computer-Aided Design, 104, 87-99.
Li, W., & Han, B. (2018). Research and application of functionally gradient materials. In IOP conference series: materials science and engineering (Vol. 394, No. 2, p. 022065). IOP Publishing.
Liu, J., Pattofatto, S., Fang, D., Lu, F., & Zhao, H. (2015). Impact strength enhancement of aluminum tetrahedral lattice truss core structures. International Journal of Impact Engineering, 79, 3-13.
Liu, K., & Tovar, A. (2013). Multiscale topology optimization of structures and periodic cellular materials. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 55881, p. V03AT03A054). American Society of Mechanical Engineers.
Liu, Q., Gao, S., Zhao, Y., Tao, W., Yu, X., & Zhi, M. (2021). Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. Journal of Materials Science, 56(16), 9605-9643.
Liu, Z., Meyers, M. A., Zhang, Z., & Ritchie, R. O. (2017). Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 88, 467-498.
Lu, Y., & Tong, L. (2021). Concurrent topology optimization of cellular structures and anisotropic materials. Computers & Structures, 255, 106624.
Ma, Z. D. (2016). Homogenization method for designing novel architectured cellular materials. In VII European Congress on Computational Methods in Applied Sciences and Engineering, Grete Island, Greece.
Masters, I. G., & Evans, K. E. (1996). Models for the elastic deformation of honeycombs. Composite structures, 35(4), 403-422.
Michielsen, K., & Stavenga, D. G. (2008). Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. Journal of The Royal Society Interface, 5(18), 85-94.
Milton, G. W. (1992). Composite materials with Poisson's ratios close to—1. Journal of the Mechanics and Physics of Solids, 40(5), 1105-1137.
Mirsayar, M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics, 1(4), 149-153.
Mirsayar, M. (2022b). A generalized model for dynamic mixed‐mode fracture via state‐based peridynamics. Fatigue & Fracture of Engineering Materials & Structures.
Mirsayar, M. M. (2014). On fracture of kinked interface cracks–The role of T-stress. Materials & Design, 61, 117-123.
Mirsayar, M. M. (2015). Mixed mode fracture analysis using extended maximum tangential strain criterion. Materials & Design, 86, 941-947.
Mirsayar, M. M. (2017). On the low temperature mixed mode fracture analysis of asphalt binder–Theories and experiments. Engineering fracture mechanics, 186, 181-194.
Mirsayar, M. M. (2018). On fracture analysis of dental restorative materials under combined tensile-shear loading. Theoretical and Applied Fracture Mechanics, 93, 170-176.
Mirsayar, M. M. (2019). T-strain effects in kinked interfacial fracture of bonded composites. Theoretical and Applied Fracture Mechanics, 104, 102381.
Mirsayar, M. M. (2021a). A generalized criterion for fatigue crack growth in additively manufactured materials–Build orientation and geometry effects. International Journal of Fatigue, 145, 106099.
Mirsayar, M. M. (2021b). A combined stress/energy-based criterion for mixed-mode fracture of laminated composites considering fiber bridging micromechanics. International Journal of Mechanical Sciences, 197, 106319.
Mirsayar, M. M. (2021c). On the effective critical distances in three-dimensional brittle fracture via a strain-based framework. Engineering Fracture Mechanics, 248, 107740.
Mirsayar, M. M. (2022a). On brittle fracture of two‐dimensional lattices with material anisotropies. Fatigue & Fracture of Engineering Materials & Structures, 45(7), 1929-1941.
Mirsayar, M. M., & Hartl, D. J. (2019). On the cracks normal to shape memory alloy/elastic material interfaces. Engineering Fracture Mechanics, 216, 106509.
Mirsayar, M. M., & Hartl, D. J. (2020). Damage detection via embedded sensory particles–effect of particle/matrix interphase properties. Composite Structures, 232, 111536.
Mirsayar, M. M., & Park, P. (2015). The role of T-stress on kinking angle of interface cracks. Materials & Design, 80, 12-19.
Mirsayar, M. M., & Park, P. (2016a). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the mechanical behavior of biomedical materials, 59, 236-240.
Mirsayar, M. M., & Park, P. (2016b). Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria. Theoretical and Applied Fracture Mechanics, 86, 233-238.
Mirsayar, M. M., & Shahbazian, B. (2022). An energy-based criterion for mixed-mode I/II/III fracture considering effective critical distances. Engineering Fracture Mechanics, 272, 108674.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering fracture mechanics, 119, 124-131.
Mirsayar, M. M., Razmi, A., & Berto, F. (2018b). Tangential strain‐based criteria for mixed‐mode I/II fracture toughness of cement concrete. Fatigue & Fracture of Engineering Materials & Structures, 41(1), 129-137.
Mirsayar, M. M., Razmi, A., Aliha, M. R. M., & Berto, F. (2018a). EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Engineering Fracture Mechanics, 190, 186-197.
Moongkhamklang, P., Elzey, D. M., & Wadley, H. N. (2008). Titanium matrix composite lattice structures. Composites Part A: applied science and manufacturing, 39(2), 176-187.
Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., Machado, B. I., ... & Bracke, J. (2010). Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1917), 1999-2032.
Muto, K., Bailey, R. W., & Mitchell, K. J. (1963). Nominated lecture: Special requirements for the design of nuclear power stations to withstand earthquakes. Proceedings of the Institution of Mechanical Engineers, 177(1), 155-203.
Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied materials today, 5, 223-245.
Najmon, J. C., Jacob, D. J., Wood, Z. M., & Tovar, A. (2018). Cellular helmet liner design through bio-inspired structures and topology optimization of compliant mechanism lattices. SAE International journal of transportation safety, 6(3), 217-236.
Naleway, S. E., Porter, M. M., McKittrick, J., & Meyers, M. A. (2015). Structural design elements in biological materials: application to bioinspiration. Advanced materials, 27(37), 5455-5476.
Novak, N., Vesenjak, M., & Ren, Z. (2016). Auxetic cellular materials-a review. Strojniški vestnik-Journal of Mechanical Engineering, 62(9), 485-493.
Novitskaya, E., Chen, P. Y., Lee, S., Castro-Ceseña, A., Hirata, G., Lubarda, V. A., & McKittrick, J. (2011). Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 7(8), 3170-3177.
Phani, A. S., Woodhouse, J., & Fleck, N. A. (2006). Wave propagation in two-dimensional periodic lattices. The Journal of the Acoustical Society of America, 119(4), 1995-2005.
Prabhu, S., Raja, V. K., & Nikhil, R. (2015). Applications of cellular materials–an overview. Applied Mechanics and Materials, 766, 511-517.
Prall, D., & Lakes, R. S. (1997). Properties of a chiral honeycomb with a Poisson's ratio of—1. International Journal of Mechanical Sciences, 39(3), 305-314.
Qian, Z., Schlangen, E., Ye, G., & van Breugel, K. (2011). 3D lattice fracture model: theory and computer implementation. In Key Engineering Materials (Vol. 452, pp. 69-72). Trans Tech Publications Ltd.
Qiao, H., Wang, S., Zhao, T., & Tang, H. (2019). Topology optimization for lightweight cellular material and structure simultaneously by combining SIMP with BESO. Journal of Mechanical Science and Technology, 33(2), 729-739.
Radman, A., Huang, X., & Xie, Y. M. (2013a). Topological optimization for the design of microstructures of isotropic cellular materials. Engineering optimization, 45(11), 1331-1348.
Radman, A., Huang, X., & Xie, Y. M. (2013b). Topology optimization of functionally graded cellular materials. Journal of Materials Science, 48(4), 1503-1510.
Rahman, O., Uddin, K. Z., Muthulingam, J., Youssef, G., Shen, C., & Koohbor, B. (2022). Density‐Graded Cellular Solids: Mechanics, Fabrication, and Applications. Advanced Engineering Materials, 24(1), 2100646.
Raja, V. B., & Prabhu, S. (2013, July). Processing of cellular materials—An overview. In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (pp. 631-633). IEEE.
Ritchie, R. O., Buehler, M. J., & Hansma, P. (2009). Plasticity and toughness in bone.
Robert, F. (1985). An isotropic three-dimensional structure with Poisson’s ratio=− 1. J. Elast, 15, 427-430.
Salimon, A., Brechet, Y., Ashby, M. F., & Greer, A. L. (2005). Potential applications for steel and titanium metal foams. Journal of materials science, 40(22), 5793-5799.
Sanami, M., Ravirala, N., Alderson, K., & Alderson, A. (2014). Auxetic materials for sports applications. Procedia Engineering, 72, 453-458.
Scarpa, F. (2008). Auxetic materials for bioprostheses [In the Spotlight]. IEEE Signal Processing Magazine, 25(5), 128-126.
Scarpa, F., Ciffo, L. G., & Yates, J. R. (2003). Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures, 13(1), 49.
Schaedler, T. A., & Carter, W. B. (2016). Architected cellular materials. Annual Review of Materials Research, 46, 187-210.
Shahbazian, B., Mirsayar, M. M., Aliha, M. R. M., Darvish, M. G., Asadi, M. M., & Haghighatpour, P. J. (2022). Experimental and theoretical investigation of mixed-mode I/II and I/III fracture behavior of PUR foams using a novel strain-based criterion. International Journal of Solids and Structures, 111996.
Shan, S., Kang, S. H., Zhao, Z., Fang, L., & Bertoldi, K. (2015). Design of planar isotropic negative Poisson’s ratio structures. Extreme Mechanics Letters, 4, 96-102.
Sigmund, O. (1994). Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 31(17), 2313-2329.
Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1-10.
Smith, C. W., Grima, J. N., & Evans, K. (2000). A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta materialia, 48(17), 4349-4356.
Somnic, J., & Jo, B. W. (2022). Homogenization Methods of Lattice Materials. Encyclopedia, 2(2), 1091-1102.
Srivastava, V. C., & Sahoo, K. L. (2007). Processing, stabilization and applications of metallic foams. Art of science. Materials Science-Poland, 25(3), 733-753.
Staszak, N., Garbowski, T., & Szymczak-Graczyk, A. (2021). Solid Truss to Shell Numerical Homogenization of Prefabricated Composite Slabs. Materials, 14(15), 4120.
Steinmetz, D. R., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed–Akbari, A., ... & Raabe, D. (2013). Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Materialia, 61(2), 494-510.
Theocaris, P. S., Stavroulakis, G. E., & Panagiotopoulos, P. D. (1997). Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach. Archive of Applied Mechanics, 67(4), 274-286.
Torabi, A. R., & Shahbazian, B. (2020a). Notch tip plastic zone determination by extending Irwin’s model. Theoretical and applied fracture mechanics, 108, 102643.
Torabi, A. R., & Shahbazian, B. (2020b). Semi-analytical estimation of the effective plastic zone size at U-notch neighborhood in thin sheets under mixed mode I/II loading. Engineering Fracture Mechanics, 239, 107323.
Torabi, A. R., Hamidi, K., & Shahbazian, B. (2021b). Compressive fracture analysis of U-notched specimens made of porous graphite reinforced by aluminum particles. Diamond and Related Materials, 120, 108613.
Torabi, A. R., Shahbazian, B., Mirsayar, M., & Cicero, S. (2021a). A Methodology to Determine the Effective Plastic Zone Size Around Blunt V-Notches under Mixed Mode I/II Loading and Plane-Stress Conditions. Metals, 11(7), 1042.
Triantafillou, T. C., & Gibson, L. J. (1990). Constitutive modeling of elastic-plastic open-cell foams. Journal of engineering mechanics, 116(12), 2772-2778.
Triantafillou, T. C., Zhang, J., Shercliff, T. L., Gibson, L. J., & Ashby, M. F. (1989). Failure surfaces for cellular materials under multiaxial loads—II. Comparison of models with experiment. International Journal of Mechanical Sciences, 31(9), 665-678.
Vashisth, A., & Mirsayar, M. M. (2020). A combined atomistic-continuum study on the temperature effects on interfacial fracture in SiC/SiO2 composites. Theoretical and Applied Fracture Mechanics, 105, 102399.
Vigliotti, A., Deshpande, V. S., & Pasini, D. (2014). Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids, 64, 44-60.
Voigt, W. (1928). Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), edited by bg teubner and jw edwards, leipzig berlin. Ann Arbor, Mich.
Wang, Y., Zhang, L., Daynes, S., Zhang, H., Feih, S., & Wang, M. Y. (2018). Design of graded lattice structure with optimized mesostructures for additive manufacturing. Materials & Design, 142, 114-123.
Wang, Z., & Hu, H. (2014). Auxetic materials and their potential applications in textiles. Textile Research Journal, 84(15), 1600-1611.
Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature materials, 14(1), 23-36.
Wei, K., Yang, Q., Ling, B., Xie, H., Qu, Z., & Fang, D. (2018). Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting. Extreme Mechanics Letters, 23, 41-48.
Xu, Y., Zhang, H., Šavija, B., Figueiredo, S. C., & Schlangen, E. (2019). Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Materials & Design, 162, 143-153.
Yang, S., Qi, C., Wang, D., Gao, R., Hu, H., & Shu, J. (2013). A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores. Advances in Mechanical Engineering, 5, 589216.
Yang, W., Li, Z. M., Shi, W., Xie, B. H., & Yang, M. B. (2004). Review on auxetic materials. Journal of materials science, 39(10), 3269-3279.
Yeganeh-Haeri, A., Weidner, D. J., & Parise, J. B. (1992). Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson's ratio. Science, 257(5070), 650-652.
Zhang, W., & Sun, S. (2006). Scale‐related topology optimization of cellular materials and structures. International Journal for numerical methods in Engineering, 68(9), 993-1011.