How to cite this paper
Mohsenzadeh, M. (2023). A micromechanical study on the correlation of the microstructure and failure mechanism of dual-phase steels under tension.Engineering Solid Mechanics, 11(2), 125-134.
Refrences
Ahmad, E., Manzoor, T., Ali, K. L., & Akhter, J. (2000). Effect of microvoid formation on the tensile properties of dual-phase steel. Journal of materials engineering and performance, 9(3), 306-310.
Balliger, N. (1982). Advances in the physical metallurgy and applications of steels. The Metals Society, 73-83.
Brown, L., & Stobbs, W. (1971). The work hardening of copper-silica, parts I and IT. Phil. Mag, 23, 1187-1199.
Clyne, T., & Withers, P. (1995). An introduction to metal matrix composites: Cambridge university press.
de Geus, T., Peerlings, R., & Geers, M. (2016). Competing damage mechanisms in a two-phase microstructure: How microstructure and loading conditions determine the onset of fracture. International Journal of Solids and Structures, 97, 687-698.
Delincé, M., Bréchet, Y., Embury, J. D., Geers, M. G. D., Jacques, P. J., & Pardoen, T. (2007). Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Materialia, 55(7), 2337-2350. doi: https://doi.org/10.1016/j.actamat.2006.11.029
Gladman, T. (1997). The Physical Metallurgy of Microalloyed Steels, London, Inst: Materials.
Hertzberg, R. W., & Hauser, F. E. (1977). Deformation and fracture mechanics of engineering materials.
Hosseini-Toudeshky, H., Anbarlooie, B., & Kadkhodapour, J. (2015). Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Materials & Design, 68, 167-176.
Kadkhodapour, J., Butz, A., & Rad, S. Z. (2011). Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Materialia, 59(7), 2575-2588.
Kadkhodapour, J., Butz, A., Ziaei-Rad, S., & Schmauder, S. (2011). A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. International Journal of Plasticity, 27(7), 1103-1125.
Kang, J., Ososkov, Y., Embury, J. D., & Wilkinson, D. S. (2007). Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scripta Materialia, 56(11), 999-1002.
Kang, S.-M., & Kwon, H. (1987). Fracture behavior of intercritically treated complex structure in medium-Carbon 6Ni steel. Metallurgical transactions A, 18(9), 1587-1592.
Koo, J., & Thomas, G. (1977). Formable HSLA and Dual-Phase Steels, ed. by AT Davenport. AIME, New York, 40.
Lee, H. S., Hwang, B., Lee, S., Lee, C. G., & Kim, S.-J. (2004). Effects of martensite morphology and tempering on dynamic deformation behavior of dual-phase steels. Metallurgical and Materials Transactions A, 35(8), 2371-2382.
Maire, E., Bouaziz, O., Di Michiel, M., & Verdu, C. (2008). Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Materialia, 56(18), 4954-4964.
Mohsenzadeh, M. S., & Mazinani, M. (2017). The effect of particles size on work hardening behavior of a low carbon steel with a composite-type microstructure. Materials Science and Engineering: A, 702, 113-124.
Paul, S. K. (2012). Micromechanics based modeling of Dual Phase steels: Prediction of ductility and failure modes. Computational Materials Science, 56, 34-42.
Paul, S. K. (2013). Effect of martensite volume fraction on stress triaxiality and deformation behavior of dual phase steel. Materials & Design, 50, 782-789.
Proudhon, H., Poole, W. J., Wang, X., & Brechet, Y. (2008). The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111. Philosophical Magazine, 88(5), 621-640.
Rashid, M. (1977). Paper 760206, Soc. Auto. Eng. Cong, Detroit, 938-949.
Rashid, M., & Cprek, E. (1978). Relationship between microstructure and formability in two high-strength, low-alloy steels. ASTM special technical publication, 647, 174-190.
Rodriguez, R., & Gutiérrez, I. (2003). Unified formulation to predict the tensile curves of steels with different microstructures. Paper presented at the Materials Science Forum.
Saeidi, N., Ashrafizadeh, F., Niroumand, B., Forouzan, M., & Barlat, F. (2014). Damage mechanism and modeling of void nucleation process in a ferrite–martensite dual phase steel. Engineering Fracture Mechanics, 127, 97-103.
Steinbrunner, D. L., Matlock, D., & Krauss, G. (1988). Void formation during tensile testing of dual phase steels. Metallurgical transactions A, 19(3), 579-589.
Sun, S., & Pugh, M. (2002). Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Materials Science and Engineering: A, 335(1-2), 298-308.
Szewczyk, A., & Gurland, J. (1982). A study of the deformation and fracture of a dual-phase steel. Metallurgical transactions A, 13(10), 1821-1826.
Vajragupta, N., Uthaisangsuk, V., Schmaling, B., Münstermann, S., Hartmaier, A., & Bleck, W. (2012). A micromechanical damage simulation of dual phase steels using XFEM. Computational Materials Science, 54, 271-279.
Wu, B., Vajragupta, N., Lian, J., Hangen, U., Wechsuwanmanee, P., & Münstermann, S. (2017). Prediction of plasticity and damage initiation behaviour of C45E+ N steel by micromechanical modelling. Materials & Design, 121, 154-166.
Balliger, N. (1982). Advances in the physical metallurgy and applications of steels. The Metals Society, 73-83.
Brown, L., & Stobbs, W. (1971). The work hardening of copper-silica, parts I and IT. Phil. Mag, 23, 1187-1199.
Clyne, T., & Withers, P. (1995). An introduction to metal matrix composites: Cambridge university press.
de Geus, T., Peerlings, R., & Geers, M. (2016). Competing damage mechanisms in a two-phase microstructure: How microstructure and loading conditions determine the onset of fracture. International Journal of Solids and Structures, 97, 687-698.
Delincé, M., Bréchet, Y., Embury, J. D., Geers, M. G. D., Jacques, P. J., & Pardoen, T. (2007). Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Materialia, 55(7), 2337-2350. doi: https://doi.org/10.1016/j.actamat.2006.11.029
Gladman, T. (1997). The Physical Metallurgy of Microalloyed Steels, London, Inst: Materials.
Hertzberg, R. W., & Hauser, F. E. (1977). Deformation and fracture mechanics of engineering materials.
Hosseini-Toudeshky, H., Anbarlooie, B., & Kadkhodapour, J. (2015). Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Materials & Design, 68, 167-176.
Kadkhodapour, J., Butz, A., & Rad, S. Z. (2011). Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Materialia, 59(7), 2575-2588.
Kadkhodapour, J., Butz, A., Ziaei-Rad, S., & Schmauder, S. (2011). A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. International Journal of Plasticity, 27(7), 1103-1125.
Kang, J., Ososkov, Y., Embury, J. D., & Wilkinson, D. S. (2007). Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scripta Materialia, 56(11), 999-1002.
Kang, S.-M., & Kwon, H. (1987). Fracture behavior of intercritically treated complex structure in medium-Carbon 6Ni steel. Metallurgical transactions A, 18(9), 1587-1592.
Koo, J., & Thomas, G. (1977). Formable HSLA and Dual-Phase Steels, ed. by AT Davenport. AIME, New York, 40.
Lee, H. S., Hwang, B., Lee, S., Lee, C. G., & Kim, S.-J. (2004). Effects of martensite morphology and tempering on dynamic deformation behavior of dual-phase steels. Metallurgical and Materials Transactions A, 35(8), 2371-2382.
Maire, E., Bouaziz, O., Di Michiel, M., & Verdu, C. (2008). Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Materialia, 56(18), 4954-4964.
Mohsenzadeh, M. S., & Mazinani, M. (2017). The effect of particles size on work hardening behavior of a low carbon steel with a composite-type microstructure. Materials Science and Engineering: A, 702, 113-124.
Paul, S. K. (2012). Micromechanics based modeling of Dual Phase steels: Prediction of ductility and failure modes. Computational Materials Science, 56, 34-42.
Paul, S. K. (2013). Effect of martensite volume fraction on stress triaxiality and deformation behavior of dual phase steel. Materials & Design, 50, 782-789.
Proudhon, H., Poole, W. J., Wang, X., & Brechet, Y. (2008). The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111. Philosophical Magazine, 88(5), 621-640.
Rashid, M. (1977). Paper 760206, Soc. Auto. Eng. Cong, Detroit, 938-949.
Rashid, M., & Cprek, E. (1978). Relationship between microstructure and formability in two high-strength, low-alloy steels. ASTM special technical publication, 647, 174-190.
Rodriguez, R., & Gutiérrez, I. (2003). Unified formulation to predict the tensile curves of steels with different microstructures. Paper presented at the Materials Science Forum.
Saeidi, N., Ashrafizadeh, F., Niroumand, B., Forouzan, M., & Barlat, F. (2014). Damage mechanism and modeling of void nucleation process in a ferrite–martensite dual phase steel. Engineering Fracture Mechanics, 127, 97-103.
Steinbrunner, D. L., Matlock, D., & Krauss, G. (1988). Void formation during tensile testing of dual phase steels. Metallurgical transactions A, 19(3), 579-589.
Sun, S., & Pugh, M. (2002). Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Materials Science and Engineering: A, 335(1-2), 298-308.
Szewczyk, A., & Gurland, J. (1982). A study of the deformation and fracture of a dual-phase steel. Metallurgical transactions A, 13(10), 1821-1826.
Vajragupta, N., Uthaisangsuk, V., Schmaling, B., Münstermann, S., Hartmaier, A., & Bleck, W. (2012). A micromechanical damage simulation of dual phase steels using XFEM. Computational Materials Science, 54, 271-279.
Wu, B., Vajragupta, N., Lian, J., Hangen, U., Wechsuwanmanee, P., & Münstermann, S. (2017). Prediction of plasticity and damage initiation behaviour of C45E+ N steel by micromechanical modelling. Materials & Design, 121, 154-166.