How to cite this paper
Parashar, S & Chawla, V. (2023). Kenaf-Coir based hybrid nano-composite: an analytical and representative volume element analysis.Engineering Solid Mechanics, 11(1), 103-118.
Refrences
Adeniyi, A. G., Adeoye, S. A., Onifade, D. V., & Ighalo, J. O. (2021). Multi-scale finite element analysis of effective elastic property of sisal fiber-reinforced polystyrene composites. Mechanics of Advanced Materials and Structures, 28(12), 1245-1253.
Adeniyi, A. G., Ighalo, J. O., & Onifade, D. V. (2019). Banana and plantain fibre-reinforced polymer composites. Journal of Polymer Engineering, 39(7), 597-611.
Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam, M., & Venkateshwaren, N. (2015). Mechanical properties of banana/kenaf fibre-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015), 66, 246-257.
Aliha, M. R. M., Razmi, A., & Mousavi, A. (2018). Fracture study of concrete composites with synthetic fibres additive under modes I and III using ENDB specimen. Construction and Building Materials, 190, 612-622.
Amali, R., & McLaughlin, D. (2013). Failure identification in composite materials using Thermographic method. Engineering Solid Mechanics, 1(2), 37-42.
Anumandla, V., & Gibson, R. F. (2006). A comprehensive closed-form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Composites Part A: Applied Science and Manufacturing, 37(12), 2178-2185.
Asim, M., Paridah, M. T., Saba, N., Jawaid, M., Alothman, O. Y., Nasir, M., & Almutairi, Z. (2018). Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Structures, 202, 1330-1338.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). Mixed-mode fracture analysis of polycrystalline graphite–a modified MTS criterion. Carbon, 46(10), 1302-1308.
Aziz, A. N. A., & Hamid, R. (2018). Mechanical properties and impact resistance of hybrid kenaf and coir fibre reinforced concrete. Journal of Advanced Research in Applied Mechanics, 47(1), 1-10.
Bajuri, F., Mazlan, N., Ishak, M. R., & Imatomi, J. (2016). Flexural and compressive properties of hybrid kenaf/silica nanoparticles in the epoxy composite. Procedia Chemistry, 19, 955-960.
Barbero, E. J. (2013). Finite element analysis of composite materials using AbaqusTM (Vol. 2103). Boca Raton: CRC press.
Chamis, C. C., & Sendeckyj, G. P. (1968). Critique on theories predicting thermoelastic properties of fibrous composites. Journal of Composite Materials, 2(3), 332-358.
El-Moumen, A., Tarfaoui, M., & Lafdi, K. (2017). Mechanical characterization of carbon nanotubes based polymer composites using indentation tests. Composites Part B: Engineering, 114, 1-7.
Geethamma, V. G., Kalaprasad, G., Groeninckx, G., & Thomas, S. (2005). Dynamic mechanical behavior of short coir fibre reinforced natural rubber composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1499-1506.
Ghani, M. A. A., Salleh, Z., Hyie, K. M., Berhan, M. N., Taib, Y. M. D., & Bakri, M. A. I. (2012). Mechanical properties of kenaf/fibreglass polyester hybrid composite. Procedia Engineering, 41, 1654-1659.
Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., & Verpoest, I. (2010). Interfacial shear strength of a glass fibre/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 70(9), 1346-1352.
Gupta, P., Chawla, V., Jain, V., & Angra, S. (2022). Green operations management for sustainable development: An explicit analysis by using fuzzy best-worst method. Decision Science Letters, 11(3), 357-366.
Halpin, J. C., & Tsai, S. W. (1967). Environmental factors in composite materials design. US Air Force Technical Report AFML TR, 67423.
Hashemi, F., Brancheriau, L., & Tahir, P. M. (2018). Hybridization and yarns configuration effects on flexural dynamic and static properties of pultruded hybrid kenaf/glass fibre composites. Composites Part A: Applied Science and Manufacturing, 112, 415-422.
Hine, P. J., Lusti, H. R., & Gusev, A. A. (2002). Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Composites Science and Technology, 62(10-11), 1445-1453.
Idumah, C. I., & Hassan, A. (2016). Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synthetic Metals, 212, 91-104.
Idumah, C. I., Hassan, A., & Bourbigot, S. (2017). Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. Journal of Analytical and Applied Pyrolysis, 123, 65-72.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
Islam, M. S., Hasbullah, N. A. B., Hasan, M., Talib, Z. A., Jawaid, M., & Haafiz, M. M. (2015). Physical, mechanical and biodegradable properties of kenaf/coir hybrid fibre reinforced polymer nanocomposites. Materials Today Communications, 4, 69-76.
Jangam, S., Raja, S., & Maheswar Gowd, B. U. (2016). Influence of multiwall carbon nanotube alignment on vibration damping of nanocomposites. Journal of Reinforced Plastics and Composites, 35(8), 617-627.
Kari, S., Berger, H., & Gabbert, U. (2007). Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Computational materials science, 39(1), 198-204.
Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fibre reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873.
Kumar, A., Angra, S., & Chanda, A. K. (2020). Analysis of the effects of varying core thicknesses of Kevlar Honeycomb sandwich structures under different regimes of testing. Materials Today: Proceedings, 21, 1615-1623.
Kumar, N., Walia, R. S., & Angra, S. (2021). Study of mechanical properties of pultruded jute-glass reinforced unsaturated polyester bio-composites with hybrid filler loading. World Journal of Engineering.
Kumar, R., Kumar, K., & Bhowmik, S. (2014). Optimization of mechanical properties of epoxy-based wood dust reinforced green composite using Taguchi method. Procedia Materials Science, 5, 688-696.
Kwon, H. J., Sunthornvarabhas, J., Park, J. W., Lee, J. H., Kim, H. J., Piyachomkwan, K., Sriroth, K., & Cho, D. (2014). Tensile properties of kenaf fibre and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of the aspect ratio of natural fibres. Composites Part B: Engineering, 56, 232-237.
Lusti, H. R., Hine, P. J., & Gusev, A. A. (2002). Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Composites Science and Technology, 62(15), 1927-1934.
Mishra, N., & Das, K. (2020). A Mori–Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions. SN Applied Sciences, 2(7), 1-14.
Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574.
Parashar, S., & Chawla, V. K. (2021). A systematic review on sustainable green fibre reinforced composite and their analytical models. Materials Today: Proceedings, 46, 6541-6546.
Parashar, S., & Chawla, V. K. (2022). Evaluation of fibre volume fraction of kenaf-coir-epoxy based green composite by finite element analysis. Materials Today: Proceedings, 50, 1265-1274.
Prabhudass, J. M., & Palanikumar, K. (2021). Experimental investigation of Mechanical and Thermal properties of Coir-Kenaf reinforced epoxy composites. Materials Today: Proceedings, 44, 3834-3837.
Ramesh, P., Prasad, B. D., & Narayana, K. L. (2020). Effect of fibre hybridization and montmorillonite clay on properties of treated kenaf/Aloevera fibre reinforced PLA hybrid nano-bio-composite. Cellulose, 27(12), 6977-6993.
Rana, S., Bhattacharyya, A., Parveen, S., Fangueiro, R., Alagirusamy, R., & Joshi, M. (2013). Processing and performance of carbon/epoxy multi-scale composites containing carbon nanofibres and single-walled carbon nanotubes. Journal of Polymer Research, 20(12), 1-11.
Rout, A., & Satapathy, A. (2012). Analysis of dry sliding wear behaviour of rice husk filled epoxy composites using design of experiment and ANN. Procedia Engineering, 38, 1218-1232.
Saba, N., Paridah, M. T., Abdan, K., & Ibrahim, N. A. (2016). Dynamic mechanical properties of oil palm nano-filler/kenaf/epoxy hybrid nanocomposites. Construction and Building Materials, 124, 133-138.
Sadik, Z., Ablouh, H., Benmoussa, K., Idrissi-Saba, H., Kaddami, H., & Arrakhiz, F. (2020). Use of 2D image analysis method for measurement of short fibres orientation in polymer composites. Engineering Solid Mechanics, 8(3), 233-244.
Sani, M. A., ABD LATIB, A. Z., Ng, C. P., Yusof, M. A., Ahmad, N., & Rani, M. A. M. (2011). Properties of coir fibre and kenaf fibre modified asphalt mixes. Journal of the Eastern Asia Society for Transportation Studies, 9, 1274-1285.
Sapiai, N., Jumahat, A., & Mahmud, J. (2015). Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. Jurnal Teknologi, 76(3).
Saxena, T., & Chawla, V. K. (2021). Banana leaf fibre-based green composite: An explicit review report. Materials Today: Proceedings, 46, 6618-6624.
Saxena, T., & Chawla, V. K. (2022). Effect of fibre orientations and their weight percentage on banana fibre-based hybrid composite. Materials Today: Proceedings, 50, 1275-1281.
Seidel, G. D., & Lagoudas, D. C. (2006). Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mechanics of Materials, 38(8-10), 884-907.
Subasinghe, A., Somashekar, A. A., & Bhattacharyya, D. (2018). Effects of wool fibre and other additives on the flammability and mechanical performance of polypropylene/kenaf composites. Composites Part B: Engineering, 136, 168-176.
Sudheer, M., Pradyoth, K. R., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5(3C), 162-168.
Tarfaoui, M., Lafdi, K., & El Moumen, A. (2016). Mechanical properties of carbon nanotubes-based polymer composites. Composites Part B: Engineering, 103, 113-121.
Theocaris, P. S., Stavroulakis, G. E., & Panagiotopoulos, P. D. (1997). Calculation of effective transverse elastic moduli of fibre-reinforced composites by numerical homogenization. Composites Science and Technology, 57(5), 573-586.
Tsai, S. W., & Hahn, H. T. (2018). Introduction to composite materials. Routledge.
Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2014). Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Materials & Design, 63, 775-782.
Yusoff, R. B., Takagi, H., & Nakagaito, A. N. (2016). Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibres. Industrial Crops and Products, 94, 562-573.
Zhao, Q., Tao, J., Yam, R. C., Mok, A. C., Li, R. K., & Song, C. (2008). Biodegradation behavior of polycaprolactone/rice husk eco-composites in simulated soil medium. Polymer Degradation and Stability, 93(8), 1571-1576.
Adeniyi, A. G., Ighalo, J. O., & Onifade, D. V. (2019). Banana and plantain fibre-reinforced polymer composites. Journal of Polymer Engineering, 39(7), 597-611.
Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam, M., & Venkateshwaren, N. (2015). Mechanical properties of banana/kenaf fibre-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015), 66, 246-257.
Aliha, M. R. M., Razmi, A., & Mousavi, A. (2018). Fracture study of concrete composites with synthetic fibres additive under modes I and III using ENDB specimen. Construction and Building Materials, 190, 612-622.
Amali, R., & McLaughlin, D. (2013). Failure identification in composite materials using Thermographic method. Engineering Solid Mechanics, 1(2), 37-42.
Anumandla, V., & Gibson, R. F. (2006). A comprehensive closed-form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Composites Part A: Applied Science and Manufacturing, 37(12), 2178-2185.
Asim, M., Paridah, M. T., Saba, N., Jawaid, M., Alothman, O. Y., Nasir, M., & Almutairi, Z. (2018). Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Structures, 202, 1330-1338.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). Mixed-mode fracture analysis of polycrystalline graphite–a modified MTS criterion. Carbon, 46(10), 1302-1308.
Aziz, A. N. A., & Hamid, R. (2018). Mechanical properties and impact resistance of hybrid kenaf and coir fibre reinforced concrete. Journal of Advanced Research in Applied Mechanics, 47(1), 1-10.
Bajuri, F., Mazlan, N., Ishak, M. R., & Imatomi, J. (2016). Flexural and compressive properties of hybrid kenaf/silica nanoparticles in the epoxy composite. Procedia Chemistry, 19, 955-960.
Barbero, E. J. (2013). Finite element analysis of composite materials using AbaqusTM (Vol. 2103). Boca Raton: CRC press.
Chamis, C. C., & Sendeckyj, G. P. (1968). Critique on theories predicting thermoelastic properties of fibrous composites. Journal of Composite Materials, 2(3), 332-358.
El-Moumen, A., Tarfaoui, M., & Lafdi, K. (2017). Mechanical characterization of carbon nanotubes based polymer composites using indentation tests. Composites Part B: Engineering, 114, 1-7.
Geethamma, V. G., Kalaprasad, G., Groeninckx, G., & Thomas, S. (2005). Dynamic mechanical behavior of short coir fibre reinforced natural rubber composites. Composites Part A: Applied Science and Manufacturing, 36(11), 1499-1506.
Ghani, M. A. A., Salleh, Z., Hyie, K. M., Berhan, M. N., Taib, Y. M. D., & Bakri, M. A. I. (2012). Mechanical properties of kenaf/fibreglass polyester hybrid composite. Procedia Engineering, 41, 1654-1659.
Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., & Verpoest, I. (2010). Interfacial shear strength of a glass fibre/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 70(9), 1346-1352.
Gupta, P., Chawla, V., Jain, V., & Angra, S. (2022). Green operations management for sustainable development: An explicit analysis by using fuzzy best-worst method. Decision Science Letters, 11(3), 357-366.
Halpin, J. C., & Tsai, S. W. (1967). Environmental factors in composite materials design. US Air Force Technical Report AFML TR, 67423.
Hashemi, F., Brancheriau, L., & Tahir, P. M. (2018). Hybridization and yarns configuration effects on flexural dynamic and static properties of pultruded hybrid kenaf/glass fibre composites. Composites Part A: Applied Science and Manufacturing, 112, 415-422.
Hine, P. J., Lusti, H. R., & Gusev, A. A. (2002). Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Composites Science and Technology, 62(10-11), 1445-1453.
Idumah, C. I., & Hassan, A. (2016). Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synthetic Metals, 212, 91-104.
Idumah, C. I., Hassan, A., & Bourbigot, S. (2017). Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. Journal of Analytical and Applied Pyrolysis, 123, 65-72.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
Islam, M. S., Hasbullah, N. A. B., Hasan, M., Talib, Z. A., Jawaid, M., & Haafiz, M. M. (2015). Physical, mechanical and biodegradable properties of kenaf/coir hybrid fibre reinforced polymer nanocomposites. Materials Today Communications, 4, 69-76.
Jangam, S., Raja, S., & Maheswar Gowd, B. U. (2016). Influence of multiwall carbon nanotube alignment on vibration damping of nanocomposites. Journal of Reinforced Plastics and Composites, 35(8), 617-627.
Kari, S., Berger, H., & Gabbert, U. (2007). Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Computational materials science, 39(1), 198-204.
Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fibre reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873.
Kumar, A., Angra, S., & Chanda, A. K. (2020). Analysis of the effects of varying core thicknesses of Kevlar Honeycomb sandwich structures under different regimes of testing. Materials Today: Proceedings, 21, 1615-1623.
Kumar, N., Walia, R. S., & Angra, S. (2021). Study of mechanical properties of pultruded jute-glass reinforced unsaturated polyester bio-composites with hybrid filler loading. World Journal of Engineering.
Kumar, R., Kumar, K., & Bhowmik, S. (2014). Optimization of mechanical properties of epoxy-based wood dust reinforced green composite using Taguchi method. Procedia Materials Science, 5, 688-696.
Kwon, H. J., Sunthornvarabhas, J., Park, J. W., Lee, J. H., Kim, H. J., Piyachomkwan, K., Sriroth, K., & Cho, D. (2014). Tensile properties of kenaf fibre and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of the aspect ratio of natural fibres. Composites Part B: Engineering, 56, 232-237.
Lusti, H. R., Hine, P. J., & Gusev, A. A. (2002). Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Composites Science and Technology, 62(15), 1927-1934.
Mishra, N., & Das, K. (2020). A Mori–Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions. SN Applied Sciences, 2(7), 1-14.
Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574.
Parashar, S., & Chawla, V. K. (2021). A systematic review on sustainable green fibre reinforced composite and their analytical models. Materials Today: Proceedings, 46, 6541-6546.
Parashar, S., & Chawla, V. K. (2022). Evaluation of fibre volume fraction of kenaf-coir-epoxy based green composite by finite element analysis. Materials Today: Proceedings, 50, 1265-1274.
Prabhudass, J. M., & Palanikumar, K. (2021). Experimental investigation of Mechanical and Thermal properties of Coir-Kenaf reinforced epoxy composites. Materials Today: Proceedings, 44, 3834-3837.
Ramesh, P., Prasad, B. D., & Narayana, K. L. (2020). Effect of fibre hybridization and montmorillonite clay on properties of treated kenaf/Aloevera fibre reinforced PLA hybrid nano-bio-composite. Cellulose, 27(12), 6977-6993.
Rana, S., Bhattacharyya, A., Parveen, S., Fangueiro, R., Alagirusamy, R., & Joshi, M. (2013). Processing and performance of carbon/epoxy multi-scale composites containing carbon nanofibres and single-walled carbon nanotubes. Journal of Polymer Research, 20(12), 1-11.
Rout, A., & Satapathy, A. (2012). Analysis of dry sliding wear behaviour of rice husk filled epoxy composites using design of experiment and ANN. Procedia Engineering, 38, 1218-1232.
Saba, N., Paridah, M. T., Abdan, K., & Ibrahim, N. A. (2016). Dynamic mechanical properties of oil palm nano-filler/kenaf/epoxy hybrid nanocomposites. Construction and Building Materials, 124, 133-138.
Sadik, Z., Ablouh, H., Benmoussa, K., Idrissi-Saba, H., Kaddami, H., & Arrakhiz, F. (2020). Use of 2D image analysis method for measurement of short fibres orientation in polymer composites. Engineering Solid Mechanics, 8(3), 233-244.
Sani, M. A., ABD LATIB, A. Z., Ng, C. P., Yusof, M. A., Ahmad, N., & Rani, M. A. M. (2011). Properties of coir fibre and kenaf fibre modified asphalt mixes. Journal of the Eastern Asia Society for Transportation Studies, 9, 1274-1285.
Sapiai, N., Jumahat, A., & Mahmud, J. (2015). Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. Jurnal Teknologi, 76(3).
Saxena, T., & Chawla, V. K. (2021). Banana leaf fibre-based green composite: An explicit review report. Materials Today: Proceedings, 46, 6618-6624.
Saxena, T., & Chawla, V. K. (2022). Effect of fibre orientations and their weight percentage on banana fibre-based hybrid composite. Materials Today: Proceedings, 50, 1275-1281.
Seidel, G. D., & Lagoudas, D. C. (2006). Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mechanics of Materials, 38(8-10), 884-907.
Subasinghe, A., Somashekar, A. A., & Bhattacharyya, D. (2018). Effects of wool fibre and other additives on the flammability and mechanical performance of polypropylene/kenaf composites. Composites Part B: Engineering, 136, 168-176.
Sudheer, M., Pradyoth, K. R., & Somayaji, S. (2015). Analytical and numerical validation of epoxy/glass structural composites for elastic models. American Journal of Materials Science, 5(3C), 162-168.
Tarfaoui, M., Lafdi, K., & El Moumen, A. (2016). Mechanical properties of carbon nanotubes-based polymer composites. Composites Part B: Engineering, 103, 113-121.
Theocaris, P. S., Stavroulakis, G. E., & Panagiotopoulos, P. D. (1997). Calculation of effective transverse elastic moduli of fibre-reinforced composites by numerical homogenization. Composites Science and Technology, 57(5), 573-586.
Tsai, S. W., & Hahn, H. T. (2018). Introduction to composite materials. Routledge.
Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2014). Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Materials & Design, 63, 775-782.
Yusoff, R. B., Takagi, H., & Nakagaito, A. N. (2016). Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibres. Industrial Crops and Products, 94, 562-573.
Zhao, Q., Tao, J., Yam, R. C., Mok, A. C., Li, R. K., & Song, C. (2008). Biodegradation behavior of polycaprolactone/rice husk eco-composites in simulated soil medium. Polymer Degradation and Stability, 93(8), 1571-1576.