How to cite this paper
Ngwangwa, H., Pandelani, T & Nemavhola, F. (2023). The application of standard nonlinear solid material models in modelling the tensile behaviour of the supraspinatus tendon.Engineering Solid Mechanics, 11(1), 63-74.
Refrences
Akintunde, A. R., & Miller, K. S. (2018). Evaluation of microstructurally motivated constitutive models to describe age-dependent tendon healing. Biomechanics and modeling in mechanobiology, 17(3), 793-814.
Christensen, R. (1980). A nonlinear theory of viscoelasticity for application to elastomers.
Chuong, C. J., & Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. Journal of biomechanical engineering, 105(3), 268-274.
Clemmer, J., Liao, J., Davis, D., Horstemeyer, M. F., & Williams, L. N. (2010). A mechanistic study for strain rate sensitivity of rabbit patellar tendon. Journal of biomechanics, 43(14), 2785-2791.
Eppell, S. J., Smith, B. N., Kahn, H., & Ballarini, R. (2006). Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. Journal of the Royal Society Interface, 3(6), 117-121.
Fang, F., & Lake, S. P. (2016). Modelling approaches for evaluating multiscale tendon mechanics. Interface Focus, 6(1), 20150044.
Ferguson, S. A. (2001). Fundamentals of Biomechanics Equilibrium, Motion, and Deformation, by N. Ozkaya & M. Nordin 1999, 393 pages, $69.95 New York: Springer-Verlag ISBN 0–387–98283–3. Ergonomics in Design, 9(3), 31-32.
Fung, Y. C. (2013). Biomechanics: mechanical properties of living tissues. Springer Science & Business Media.
Gautieri, A., Vesentini, S., Redaelli, A., & Ballarini, R. (2013). Modeling and measuring visco-elastic properties: From collagen molecules to collagen fibrils. International Journal of Non-Linear Mechanics, 56, 25-33.
Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano letters, 11(2), 757-766.
Groth, K. M., & Granata, K. P. (2008). The viscoelastic standard nonlinear solid model: Predicting the response of the lumbar intervertebral disk to low-frequency vibrations. Journal of biomechanical engineering, 130(3).
Haslach, H. W. (2005). Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomechanics and Modeling in Mechanobiology, 3(3), 172-189.
Herchenhan, A., Kalson, N. S., Holmes, D. F., Hill, P., Kadler, K. E., & Margetts, L. (2012). Tenocyte contraction induces crimp formation in tendon-like tissue. Biomechanics and modeling in mechanobiology, 11(3), 449-459.
Johnson, G. A., Livesay, G. A., Woo, S. L., & Rajagopal, K. R. (1996). A single integral finite strain viscoelastic model of ligaments and tendons.
Lake, S. P., Miller, K. S., Elliott, D. M., & Soslowsky, L. J. (2010). Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. Journal of biomechanics, 43(4), 727-732.
Leeman, S., & Jones, J. (2008). Visco-Elastic Models for Soft Tissues. In Acoustical Imaging (pp. 369-376). Springer, Dordrecht.
Maganaris, C. N., Chatzistergos, P., Reeves, N. D., & Narici, M. V. (2017). Quantification of internal stress-strain fields in human tendon: unraveling the mechanisms that underlie regional tendon adaptations and mal-adaptations to mechanical loading and the effectiveness of therapeutic eccentric exercise. Frontiers in physiology, 8, 91.
Martins, P. A. L. S., Natal Jorge, R. M., & Ferreira, A. J. M. (2006). A comparative study of several material models for prediction of hyperelastic properties: Application to silicone‐rubber and soft tissues. Strain, 42(3), 135-147.
Masithulela, F. (2015a, November). The effect of over-loaded right ventricle during passive filling in rat heart: A biventricular finite element model. In ASME International Mechanical Engineering Congress and Exposition (Vol. 57380, p. V003T03A005). American Society of Mechanical Engineers.
Masithulela, F. (2015b, November). Analysis of passive filling with fibrotic myocardial infarction. In ASME international mechanical engineering congress and exposition (Vol. 57380, p. V003T03A004). American Society of Mechanical Engineers.
Masithulela, F. (2016a). Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Bio-medical materials and engineering, 27(5), 507-525.
Masithulela, F. J. (2016b). Computational biomechanics in the remodelling rat heart post myocardial infarction, PhD Thesis, University of Cape Town, Cape Town, South Africa.
Mathworks® Inc. (2019). https://www.mathworks.com/help/optim/nonlinear-programming.html.
Mouw, J. K., Ou, G., & Weaver, V. M. (2014). Extracellular matrix assembly: a multiscale deconstruction. Nature reviews Molecular cell biology, 15(12), 771-785.
Ndlovu, Z., Nemavhola, F., & Desai, D. (2020). Biaxial mechanical characterization and constitutive modelling of sheep sclera soft tissue. Российский журнал биомеханики, 24(1), 97-110.
Nemavhola, F. (2017). Biaxial quantification of passive porcine myocardium elastic properties by region. Engineering Solid Mechanics, 5(3), 155-166.
Nemavhola, F. (2019). Detailed structural assessment of healthy interventricular septum in the presence of remodeling infarct in the free wall–A finite element model. Heliyon, 5(6), e01841.
Nemavhola, F. (2019). Mechanics of the septal wall may be affected by the presence of fibrotic infarct in the free wall at end-systole. International Journal of Medical Engineering and Informatics, 11(3), 205-225.
Nemavhola, F. (2021). Study of biaxial mechanical properties of the passive pig heart: material characterisation and categorisation of regional differences. International Journal of Mechanical and Materials Engineering, 16(1), 1-14.
Nemavhola, F., & Sigwadi, R. (2019). Prediction of hyperelastic material properties of Nafion117 and Nafion/ZrO2 nano-composite membrane. International Journal of Automotive and Mechanical Engineering, 16(2), 6524-6540.
Nemavhola, F., Ngwangwa, H., Davies, N., & Franz, T. (2021). Passive Biaxial Tensile Dataset of Three Main Rat Heart Myocardia: Left Ventricle, Mid-Wall and Right Ventricle
Ngwangwa, H. M., & Nemavhola, F. (2021). Evaluating computational performances of hyperelastic models on supraspinatus tendon uniaxial tensile test data. Journal of Computational Applied Mechanics, 52(1), 27-43.
Ogden, R. W., Saccomandi, G., & Sgura, I. (2004). Fitting hyperelastic models to experimental data. Computational Mechanics, 34(6), 484-502.
Revel, G. M., Scalise, A., & Scalise, L. (2003). Measurement of stress–strain and vibrational properties of tendons. Measurement Science and Technology, 14(8), 1427.
Shim, J., & Mohr, D. (2011). Rate dependent finite strain constitutive model of polyurea. International Journal of Plasticity, 27(6), 868-886.
Upadhyay, K., Subhash, G., & Spearot, D. (2020). Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials. Journal of the Mechanics and Physics of Solids, 135, 103777.
Wang, J. H., Guo, Q., & Li, B. (2012). Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. Journal of hand therapy, 25(2), 133-141.
Woo, S. Y., Johnson, G. A., & Smith, B. A. (1993). Mathematical modeling of ligaments and tendons.
Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and technology, 66(5), 754-771.
Christensen, R. (1980). A nonlinear theory of viscoelasticity for application to elastomers.
Chuong, C. J., & Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. Journal of biomechanical engineering, 105(3), 268-274.
Clemmer, J., Liao, J., Davis, D., Horstemeyer, M. F., & Williams, L. N. (2010). A mechanistic study for strain rate sensitivity of rabbit patellar tendon. Journal of biomechanics, 43(14), 2785-2791.
Eppell, S. J., Smith, B. N., Kahn, H., & Ballarini, R. (2006). Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. Journal of the Royal Society Interface, 3(6), 117-121.
Fang, F., & Lake, S. P. (2016). Modelling approaches for evaluating multiscale tendon mechanics. Interface Focus, 6(1), 20150044.
Ferguson, S. A. (2001). Fundamentals of Biomechanics Equilibrium, Motion, and Deformation, by N. Ozkaya & M. Nordin 1999, 393 pages, $69.95 New York: Springer-Verlag ISBN 0–387–98283–3. Ergonomics in Design, 9(3), 31-32.
Fung, Y. C. (2013). Biomechanics: mechanical properties of living tissues. Springer Science & Business Media.
Gautieri, A., Vesentini, S., Redaelli, A., & Ballarini, R. (2013). Modeling and measuring visco-elastic properties: From collagen molecules to collagen fibrils. International Journal of Non-Linear Mechanics, 56, 25-33.
Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano letters, 11(2), 757-766.
Groth, K. M., & Granata, K. P. (2008). The viscoelastic standard nonlinear solid model: Predicting the response of the lumbar intervertebral disk to low-frequency vibrations. Journal of biomechanical engineering, 130(3).
Haslach, H. W. (2005). Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomechanics and Modeling in Mechanobiology, 3(3), 172-189.
Herchenhan, A., Kalson, N. S., Holmes, D. F., Hill, P., Kadler, K. E., & Margetts, L. (2012). Tenocyte contraction induces crimp formation in tendon-like tissue. Biomechanics and modeling in mechanobiology, 11(3), 449-459.
Johnson, G. A., Livesay, G. A., Woo, S. L., & Rajagopal, K. R. (1996). A single integral finite strain viscoelastic model of ligaments and tendons.
Lake, S. P., Miller, K. S., Elliott, D. M., & Soslowsky, L. J. (2010). Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. Journal of biomechanics, 43(4), 727-732.
Leeman, S., & Jones, J. (2008). Visco-Elastic Models for Soft Tissues. In Acoustical Imaging (pp. 369-376). Springer, Dordrecht.
Maganaris, C. N., Chatzistergos, P., Reeves, N. D., & Narici, M. V. (2017). Quantification of internal stress-strain fields in human tendon: unraveling the mechanisms that underlie regional tendon adaptations and mal-adaptations to mechanical loading and the effectiveness of therapeutic eccentric exercise. Frontiers in physiology, 8, 91.
Martins, P. A. L. S., Natal Jorge, R. M., & Ferreira, A. J. M. (2006). A comparative study of several material models for prediction of hyperelastic properties: Application to silicone‐rubber and soft tissues. Strain, 42(3), 135-147.
Masithulela, F. (2015a, November). The effect of over-loaded right ventricle during passive filling in rat heart: A biventricular finite element model. In ASME International Mechanical Engineering Congress and Exposition (Vol. 57380, p. V003T03A005). American Society of Mechanical Engineers.
Masithulela, F. (2015b, November). Analysis of passive filling with fibrotic myocardial infarction. In ASME international mechanical engineering congress and exposition (Vol. 57380, p. V003T03A004). American Society of Mechanical Engineers.
Masithulela, F. (2016a). Bi-ventricular finite element model of right ventricle overload in the healthy rat heart. Bio-medical materials and engineering, 27(5), 507-525.
Masithulela, F. J. (2016b). Computational biomechanics in the remodelling rat heart post myocardial infarction, PhD Thesis, University of Cape Town, Cape Town, South Africa.
Mathworks® Inc. (2019). https://www.mathworks.com/help/optim/nonlinear-programming.html.
Mouw, J. K., Ou, G., & Weaver, V. M. (2014). Extracellular matrix assembly: a multiscale deconstruction. Nature reviews Molecular cell biology, 15(12), 771-785.
Ndlovu, Z., Nemavhola, F., & Desai, D. (2020). Biaxial mechanical characterization and constitutive modelling of sheep sclera soft tissue. Российский журнал биомеханики, 24(1), 97-110.
Nemavhola, F. (2017). Biaxial quantification of passive porcine myocardium elastic properties by region. Engineering Solid Mechanics, 5(3), 155-166.
Nemavhola, F. (2019). Detailed structural assessment of healthy interventricular septum in the presence of remodeling infarct in the free wall–A finite element model. Heliyon, 5(6), e01841.
Nemavhola, F. (2019). Mechanics of the septal wall may be affected by the presence of fibrotic infarct in the free wall at end-systole. International Journal of Medical Engineering and Informatics, 11(3), 205-225.
Nemavhola, F. (2021). Study of biaxial mechanical properties of the passive pig heart: material characterisation and categorisation of regional differences. International Journal of Mechanical and Materials Engineering, 16(1), 1-14.
Nemavhola, F., & Sigwadi, R. (2019). Prediction of hyperelastic material properties of Nafion117 and Nafion/ZrO2 nano-composite membrane. International Journal of Automotive and Mechanical Engineering, 16(2), 6524-6540.
Nemavhola, F., Ngwangwa, H., Davies, N., & Franz, T. (2021). Passive Biaxial Tensile Dataset of Three Main Rat Heart Myocardia: Left Ventricle, Mid-Wall and Right Ventricle
Ngwangwa, H. M., & Nemavhola, F. (2021). Evaluating computational performances of hyperelastic models on supraspinatus tendon uniaxial tensile test data. Journal of Computational Applied Mechanics, 52(1), 27-43.
Ogden, R. W., Saccomandi, G., & Sgura, I. (2004). Fitting hyperelastic models to experimental data. Computational Mechanics, 34(6), 484-502.
Revel, G. M., Scalise, A., & Scalise, L. (2003). Measurement of stress–strain and vibrational properties of tendons. Measurement Science and Technology, 14(8), 1427.
Shim, J., & Mohr, D. (2011). Rate dependent finite strain constitutive model of polyurea. International Journal of Plasticity, 27(6), 868-886.
Upadhyay, K., Subhash, G., & Spearot, D. (2020). Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials. Journal of the Mechanics and Physics of Solids, 135, 103777.
Wang, J. H., Guo, Q., & Li, B. (2012). Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. Journal of hand therapy, 25(2), 133-141.
Woo, S. Y., Johnson, G. A., & Smith, B. A. (1993). Mathematical modeling of ligaments and tendons.
Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and technology, 66(5), 754-771.