How to cite this paper
Sumesh, C & Ramesh, A. (2023). Optimization and finite element modeling of orthogonal turning of Ti6Al4V alloys: A comparative study of different optimization techniques.Engineering Solid Mechanics, 11(1), 11-22.
Refrences
Ali, M. H., Khidhir, B. A., Ansari, M. N. M., & Mohamed, B. (2013). FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy. Hbrc Journal, 9(3), 263-269.
Armendia, M., Garay, A., Iriarte, L. M., & Arrazola, P. J. (2010). Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. Journal of Materials Processing Technology, 210(2), 197-203.
Arrazola, P. J., Garay, A., Iriarte, L. M., Armendia, M., Marya, S., & Le Maître, F. (2009). Machinability of titanium alloys (Ti6Al4V and Ti555. 3). Journal of materials processing technology, 209(5), 2223-2230.
Asad, M., Ijaz, H., Saleem, W., Mahfouz, A. S., Ahmad, Z., & Mabrouki, T. (2019). Finite element analysis and statistical optimization of end-burr in turning AA2024. Metals, 9(3), 276.
Aydar, A. Y. (2018). Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes, 157-169.
Bandapalli, C., Singh, K. K., Sutaria, B. M., & Bhatt, D. V. (2018). Experimental investigation of top burr formation in high-speed micro-end milling of titanium alloy. Machining Science and Technology, 22(6), 989-1011.
Boujelbene, M. (2018). Investigation and modeling of the tangential cutting force of the Titanium alloy Ti-6Al-4V in the orthogonal turning process. Procedia manufacturing, 20, 571-577.
Çelik, Y. H., Kilickap, E., & Güney, M. (2017). Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(6), 2085-2093.
Chen, G., Ren, C., Yang, X., Jin, X., & Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56(9), 1027-1038.
Chen, Y., Li, H., & Wang, J. (2015). Further development of Oxley’s predictive force model for orthogonal cutting. Machining Science and Technology, 19(1), 86-111.
Choudhary, A., & Paul, S. (2019). Performance evaluation of PVD TIALN coated carbide tools vis-à-vis uncoated carbide tool in turning of titanium alloy (Ti-6Al-4V) by simultaneous minimization of cutting energy, dimensional deviation and tool wear. Machining Science and Technology, 23(3), 368-384.
D N V, P. O., Marimuthu K, P., & M, T. (2019). Effect of Speed, Feed and Depth of Cut on Machining Induced Residual Stresses in Aisi 1045 Steel. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 2, pp. 3397–3400). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijrte.a1262.078219
Davim, J. P. (2014). Machining of Titanium Alloys. Springer. https://doi.org/10.1007/978-3-662-43902-9
Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of materials processing technology, 134(2), 233-253.
Gao, C., & Zhang, L. (2013). Effect of cutting conditions on the serrated chip formation in high-speed cutting. Machining Science and Technology, 17(1), 26-40.
Hassanpour, H., Sadeghi, M. H., Rezaei, H., & Rasti, A. (2016). Experimental study of cutting force, microhardness, surface roughness, and burr size on micromilling of Ti6Al4V in minimum quantity lubrication. Materials and Manufacturing Processes, 31(13), 1654-1662.
Hribersek, M., Pusavec, F., Rech, J., & Kopac, J. (2018). Modeling of machined surface characteristics in cryogenic orthogonal turning of inconel 718. Machining Science and Technology, 22(5), 829-850.
Jagadesh, T., & Samuel, G. L. (2015). Mechanistic and finite element model for prediction of cutting forces during micro-turning of titanium alloy. Machining Science and Technology, 19(4), 593-629.
Jaiswal, A. P., Khanna, N., & Bajpai, V. (2020). Orthogonal machining of Heat Treated Ti-10-2-3: FE and Experimental. Materials and Manufacturing Processes, 35(16), 1822-1831.
Jamil, M., Khan, A. M., He, N., Li, L., Iqbal, A., & Mia, M. (2019). Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: a step towards sustainable manufacturing. Machining Science and Technology, 23(6), 1022-1046.
Javidikia, M., Sadeghifar, M., Songmene, V., & Jahazi, M. (2020). On the impacts of tool geometry and cutting conditions in straight turning of aluminum alloys 6061-T6: an experimentally validated numerical study. The International Journal of Advanced Manufacturing Technology, 106(9), 4547-4565.
Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture mechanics, 21(1), 31-48.
Kay, G. (2002). Failure modeling of titanium-6Al-4V and 2024-T3 aluminum with the Johnson-Cook material model (No. UCRL-ID-149880). Lawrence Livermore National Lab., CA (US).
Keblouti, O., Boulanouar, L., Azizi, M., & Athmane, M. (2017). Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools. International Journal of Industrial Engineering Computations, 8(1), 71-84.
Kohir, V., & Dundur, S. T. (2014). Finite Element Simulation to study the effect of flank wear land inclination on cutting forces and temperature distribution in orthogonal machining. Journal of Engineering Fundamentals, 1, 30-42.
Korkmaz, M. E., & Yaşar, N. (2021). FEM modelling of turning of AA6061-T6: Investigation of chip morphology, chip thickness and shear angle. Journal of Production Systems and Manufacturing Science, 2(1), 50-58.
Li, B., Tian, X., & Zhang, M. (2020). Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm. The International Journal of Advanced Manufacturing Technology, 111(7), 2323-2335
Liu, L., Wu, M., Li, L., & Cheng, Y. (2020). FEM simulation and experiment of high-pressure cooling effect on cutting force and machined surface quality during turning Inconel 718. Integrated Ferroelectrics, 206(1), 160-172.
Lučić, M., Marušić, V., Baralić, J., & Mitrović, A. (2020). Numerical Analysis of the Temperature Field in the Cutting Zone in Continuous and Discontinuous Metal Cutting by Turning. Tehnički vjesnik, 27(5), 1486-1491.
Mir, A., Luo, X., Cheng, K., & Cox, A. (2018). Investigation of influence of tool rake angle in single point diamond turning of silicon. The International Journal of Advanced Manufacturing Technology, 94(5), 2343-2355.
Murthy, K. L. N., Sandeep, B., Vanukuru, R., & Chaitanya, T. K. (2017). A Review on Taguchi’s Technique of forming Orthogonal Arrays. Journal of Advances in Mechanical Engineering and Science, 3(3), 9-14.
Narayanan, S. V., Benjamin D, M., Keshav, R., & Raj, D. S. (2020). A combined numerical and experimental investigation of minimum quantity lubrication applied to end milling of Ti6Al4V alloy. Machining Science and Technology, 25(2), 209-236.
Nguyen, D. T. Q. (2020). Prediction of Temperature Distribution in PCBN Cutting Tools in Orthogonal Turning 9XC Hardened Alloy Steels. In Advanced Materials (pp. 131-139). Springer, Cham.
Oliaei, S. N. B., & Karpat, Y. (2016). Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. Journal of Materials Processing Technology, 235, 28-40.
Olvera, D., de Lacalle, L. N. L., Urbikain, G., Lamikiz, A., Rodal, P., & Zamakona, I. (2012). Hole making using ball helical milling on titanium alloys. Machining Science and Technology, 16(2), 173-188.
Outeiro, J. C., Umbrello, D., M’Saoubi, R., & Jawahir, I. S. (2015). Evaluation of present numerical models for predicting metal cutting performance and residual stresses. Machining Science and Technology, 19(2), 183-216.
Palanikumar, K., Muthukrishnan, N., & Hariprasad, K. S. (2008). Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Machining Science and Technology, 12(4), 529-545.
Pekşen, H., & Kalyon, A. (2021). Optimization and measurement of flank wear and surface roughness via Taguchi based grey relational analysis. Materials and Manufacturing Processes, 36(16), 1865-1874.
Prakash, K. S., Gopal, P. M., & Karthik, S. (2020). Multi-objective optimization using Taguchi based grey relational analysis in turning of Rock dust reinforced Aluminum MMC. Measurement, 157, 107664.
Pramanik, A. (2014). Problems and solutions in machining of titanium alloys. The International Journal of Advanced Manufacturing Technology, 70(5), 919-928.
Ramesh, A., Sumesh, C. S., Abhilash, P. M., & Rakesh, S. (2015). Finite element modelling of orthogonal machining of hard to machine materials. International Journal of Machining and Machinability of Materials, 17(6), 543-568.
Ran, C., & Chen, P. (2018). Dynamic shear deformation and failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe alloys. Materials, 11(1), 76.
Rao, K. V. (2019). A novel approach for minimization of tool vibration and surface roughness in orthogonal turn milling of silicon bronze alloy. Silicon, 11(2), 691-701.
Ribeiro, M. V., Moreira, M. R. V., & Ferreira, J. R. (2003). Optimization of titanium alloy (6Al–4V) machining. Journal of materials processing technology, 143, 458-463.
Sadeghifar, M., Sedaghati, R., Jomaa, W., & Songmene, V. (2018a). Finite element analysis and response surface method for robust multi-performance optimization of radial turning of hard 300M steel. The International Journal of Advanced Manufacturing Technology, 94(5), 2457-2474.
Sadeghifar, M., Sedaghati, R., Jomaa, W., & Songmene, V. (2018b). A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions. The International Journal of Advanced Manufacturing Technology, 96(9), 3747-3791.
Sahib, B. S., & Nassrullah, K. S. (2020). Experimental and Numerical Investigation of Temperature Distribution in the Cutting Zone with Different Coated Tools in Orthogonal Turning Operations. In IOP Conference Series: Materials Science and Engineering (Vol. 671, No. 1, p. 012016). IOP Publishing.
Sahoo, A., Rout, A., & Das, D. (2015). Response surface and artificial neural network prediction model and optimization for surface roughness in machining. International Journal of Industrial Engineering Computations, 6(2), 229-240.
Sahu, N. K., & Andhare, A. B. (2015, August). Optimization of surface roughness in turning of Ti-6Al-4V Using Response Surface Methodology and TLBO. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 57113, p. V004T05A020). American Society of Mechanical Engineers. Pervaiz, S., Rashid, A., Deiab, I., & Nicolescu, M. (2014). Influence of tool materials on machinability of titanium-and nickel-based alloys: a review. Materials and Manufacturing Processes, 29(3), 219-252.
Sahu, N. K., & Andhare, A. B. (2019). Multiobjective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms. Journal of Computational Design and Engineering, 6(1), 1-12.
Sahu, N. K., Andhare, A. B., & Raju, R. A. (2018). Evaluation of performance of nanofluid using multiwalled carbon nanotubes for machining of Ti–6AL–4V. Machining science and Technology, 22(3), 476-492.
Saravanamurugan, S., Sundar, B. S., Pranav, R. S., & Shanmugasundaram, A. (2021). Optimization of cutting tool geometry and machining parameters in turning process. Materials Today: Proceedings, 38, 3351-3357.
Shaw, M. C., & Cookson, J. O. (2005). Metal cutting principles (Vol. 2, p. 98). New York: Oxford university press.
Shi, B., & Attia, H. (2010). Current status and future direction in the numerical modeling and simulation of machining processes: a critical literature review. Machining Science and Technology, 14(2), 149-188.
Smith, M. (2009). ABAQUS/Standard User's Manual, Version 6.9.
Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261(7-8), 760-766.
Sumesh, C. S., & Ramesh, A. (2018). Numerical modelling and optimization of dry orthogonal turning of Al6061 T6 alloy. Periodica Polytechnica Mechanical Engineering, 62(3), 196-202. Irfan, S. S., Kumar, M. V., & Rudresha, N. (2019). Optimization of machining parameters in CNC turning of EN45 by Taguchi’s orthogonal array experiments. Materials Today: Proceedings, 18, 2952-2961.
Wu, H., & Guo, L. (2014). Machinability of titanium alloy TC21 under orthogonal turning process. Materials and Manufacturing Processes, 29(11-12), 1441-1445.
Yaich, M., Ayed, Y., Bouaziz, Z., & Germain, G. (2020). A 2D finite element analysis of the effect of numerical parameters on the reliability of Ti6Al4V machining modeling. Machining Science and Technology, 24(4), 509-543.
Zhou, Y., Sun, H., Li, A., Lv, M., Xue, C., & Zhao, J. (2019). FEM simulation-based cutting parameters optimization in machining aluminum-silicon piston alloy ZL109 with PCD tool. Journal of Mechanical Science and Technology, 33(7), 3457-3465.
Zhuang, K., Weng, J., Zhu, D., & Ding, H. (2018). Analytical modeling and experimental validation of cutting forces considering edge effects and size effects with round chamfered ceramic tools. Journal of manufacturing science and engineering, 140(8), 081012.
Armendia, M., Garay, A., Iriarte, L. M., & Arrazola, P. J. (2010). Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. Journal of Materials Processing Technology, 210(2), 197-203.
Arrazola, P. J., Garay, A., Iriarte, L. M., Armendia, M., Marya, S., & Le Maître, F. (2009). Machinability of titanium alloys (Ti6Al4V and Ti555. 3). Journal of materials processing technology, 209(5), 2223-2230.
Asad, M., Ijaz, H., Saleem, W., Mahfouz, A. S., Ahmad, Z., & Mabrouki, T. (2019). Finite element analysis and statistical optimization of end-burr in turning AA2024. Metals, 9(3), 276.
Aydar, A. Y. (2018). Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes, 157-169.
Bandapalli, C., Singh, K. K., Sutaria, B. M., & Bhatt, D. V. (2018). Experimental investigation of top burr formation in high-speed micro-end milling of titanium alloy. Machining Science and Technology, 22(6), 989-1011.
Boujelbene, M. (2018). Investigation and modeling of the tangential cutting force of the Titanium alloy Ti-6Al-4V in the orthogonal turning process. Procedia manufacturing, 20, 571-577.
Çelik, Y. H., Kilickap, E., & Güney, M. (2017). Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(6), 2085-2093.
Chen, G., Ren, C., Yang, X., Jin, X., & Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56(9), 1027-1038.
Chen, Y., Li, H., & Wang, J. (2015). Further development of Oxley’s predictive force model for orthogonal cutting. Machining Science and Technology, 19(1), 86-111.
Choudhary, A., & Paul, S. (2019). Performance evaluation of PVD TIALN coated carbide tools vis-à-vis uncoated carbide tool in turning of titanium alloy (Ti-6Al-4V) by simultaneous minimization of cutting energy, dimensional deviation and tool wear. Machining Science and Technology, 23(3), 368-384.
D N V, P. O., Marimuthu K, P., & M, T. (2019). Effect of Speed, Feed and Depth of Cut on Machining Induced Residual Stresses in Aisi 1045 Steel. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 2, pp. 3397–3400). Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP. https://doi.org/10.35940/ijrte.a1262.078219
Davim, J. P. (2014). Machining of Titanium Alloys. Springer. https://doi.org/10.1007/978-3-662-43902-9
Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of materials processing technology, 134(2), 233-253.
Gao, C., & Zhang, L. (2013). Effect of cutting conditions on the serrated chip formation in high-speed cutting. Machining Science and Technology, 17(1), 26-40.
Hassanpour, H., Sadeghi, M. H., Rezaei, H., & Rasti, A. (2016). Experimental study of cutting force, microhardness, surface roughness, and burr size on micromilling of Ti6Al4V in minimum quantity lubrication. Materials and Manufacturing Processes, 31(13), 1654-1662.
Hribersek, M., Pusavec, F., Rech, J., & Kopac, J. (2018). Modeling of machined surface characteristics in cryogenic orthogonal turning of inconel 718. Machining Science and Technology, 22(5), 829-850.
Jagadesh, T., & Samuel, G. L. (2015). Mechanistic and finite element model for prediction of cutting forces during micro-turning of titanium alloy. Machining Science and Technology, 19(4), 593-629.
Jaiswal, A. P., Khanna, N., & Bajpai, V. (2020). Orthogonal machining of Heat Treated Ti-10-2-3: FE and Experimental. Materials and Manufacturing Processes, 35(16), 1822-1831.
Jamil, M., Khan, A. M., He, N., Li, L., Iqbal, A., & Mia, M. (2019). Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: a step towards sustainable manufacturing. Machining Science and Technology, 23(6), 1022-1046.
Javidikia, M., Sadeghifar, M., Songmene, V., & Jahazi, M. (2020). On the impacts of tool geometry and cutting conditions in straight turning of aluminum alloys 6061-T6: an experimentally validated numerical study. The International Journal of Advanced Manufacturing Technology, 106(9), 4547-4565.
Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture mechanics, 21(1), 31-48.
Kay, G. (2002). Failure modeling of titanium-6Al-4V and 2024-T3 aluminum with the Johnson-Cook material model (No. UCRL-ID-149880). Lawrence Livermore National Lab., CA (US).
Keblouti, O., Boulanouar, L., Azizi, M., & Athmane, M. (2017). Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools. International Journal of Industrial Engineering Computations, 8(1), 71-84.
Kohir, V., & Dundur, S. T. (2014). Finite Element Simulation to study the effect of flank wear land inclination on cutting forces and temperature distribution in orthogonal machining. Journal of Engineering Fundamentals, 1, 30-42.
Korkmaz, M. E., & Yaşar, N. (2021). FEM modelling of turning of AA6061-T6: Investigation of chip morphology, chip thickness and shear angle. Journal of Production Systems and Manufacturing Science, 2(1), 50-58.
Li, B., Tian, X., & Zhang, M. (2020). Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm. The International Journal of Advanced Manufacturing Technology, 111(7), 2323-2335
Liu, L., Wu, M., Li, L., & Cheng, Y. (2020). FEM simulation and experiment of high-pressure cooling effect on cutting force and machined surface quality during turning Inconel 718. Integrated Ferroelectrics, 206(1), 160-172.
Lučić, M., Marušić, V., Baralić, J., & Mitrović, A. (2020). Numerical Analysis of the Temperature Field in the Cutting Zone in Continuous and Discontinuous Metal Cutting by Turning. Tehnički vjesnik, 27(5), 1486-1491.
Mir, A., Luo, X., Cheng, K., & Cox, A. (2018). Investigation of influence of tool rake angle in single point diamond turning of silicon. The International Journal of Advanced Manufacturing Technology, 94(5), 2343-2355.
Murthy, K. L. N., Sandeep, B., Vanukuru, R., & Chaitanya, T. K. (2017). A Review on Taguchi’s Technique of forming Orthogonal Arrays. Journal of Advances in Mechanical Engineering and Science, 3(3), 9-14.
Narayanan, S. V., Benjamin D, M., Keshav, R., & Raj, D. S. (2020). A combined numerical and experimental investigation of minimum quantity lubrication applied to end milling of Ti6Al4V alloy. Machining Science and Technology, 25(2), 209-236.
Nguyen, D. T. Q. (2020). Prediction of Temperature Distribution in PCBN Cutting Tools in Orthogonal Turning 9XC Hardened Alloy Steels. In Advanced Materials (pp. 131-139). Springer, Cham.
Oliaei, S. N. B., & Karpat, Y. (2016). Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. Journal of Materials Processing Technology, 235, 28-40.
Olvera, D., de Lacalle, L. N. L., Urbikain, G., Lamikiz, A., Rodal, P., & Zamakona, I. (2012). Hole making using ball helical milling on titanium alloys. Machining Science and Technology, 16(2), 173-188.
Outeiro, J. C., Umbrello, D., M’Saoubi, R., & Jawahir, I. S. (2015). Evaluation of present numerical models for predicting metal cutting performance and residual stresses. Machining Science and Technology, 19(2), 183-216.
Palanikumar, K., Muthukrishnan, N., & Hariprasad, K. S. (2008). Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Machining Science and Technology, 12(4), 529-545.
Pekşen, H., & Kalyon, A. (2021). Optimization and measurement of flank wear and surface roughness via Taguchi based grey relational analysis. Materials and Manufacturing Processes, 36(16), 1865-1874.
Prakash, K. S., Gopal, P. M., & Karthik, S. (2020). Multi-objective optimization using Taguchi based grey relational analysis in turning of Rock dust reinforced Aluminum MMC. Measurement, 157, 107664.
Pramanik, A. (2014). Problems and solutions in machining of titanium alloys. The International Journal of Advanced Manufacturing Technology, 70(5), 919-928.
Ramesh, A., Sumesh, C. S., Abhilash, P. M., & Rakesh, S. (2015). Finite element modelling of orthogonal machining of hard to machine materials. International Journal of Machining and Machinability of Materials, 17(6), 543-568.
Ran, C., & Chen, P. (2018). Dynamic shear deformation and failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe alloys. Materials, 11(1), 76.
Rao, K. V. (2019). A novel approach for minimization of tool vibration and surface roughness in orthogonal turn milling of silicon bronze alloy. Silicon, 11(2), 691-701.
Ribeiro, M. V., Moreira, M. R. V., & Ferreira, J. R. (2003). Optimization of titanium alloy (6Al–4V) machining. Journal of materials processing technology, 143, 458-463.
Sadeghifar, M., Sedaghati, R., Jomaa, W., & Songmene, V. (2018a). Finite element analysis and response surface method for robust multi-performance optimization of radial turning of hard 300M steel. The International Journal of Advanced Manufacturing Technology, 94(5), 2457-2474.
Sadeghifar, M., Sedaghati, R., Jomaa, W., & Songmene, V. (2018b). A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions. The International Journal of Advanced Manufacturing Technology, 96(9), 3747-3791.
Sahib, B. S., & Nassrullah, K. S. (2020). Experimental and Numerical Investigation of Temperature Distribution in the Cutting Zone with Different Coated Tools in Orthogonal Turning Operations. In IOP Conference Series: Materials Science and Engineering (Vol. 671, No. 1, p. 012016). IOP Publishing.
Sahoo, A., Rout, A., & Das, D. (2015). Response surface and artificial neural network prediction model and optimization for surface roughness in machining. International Journal of Industrial Engineering Computations, 6(2), 229-240.
Sahu, N. K., & Andhare, A. B. (2015, August). Optimization of surface roughness in turning of Ti-6Al-4V Using Response Surface Methodology and TLBO. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 57113, p. V004T05A020). American Society of Mechanical Engineers. Pervaiz, S., Rashid, A., Deiab, I., & Nicolescu, M. (2014). Influence of tool materials on machinability of titanium-and nickel-based alloys: a review. Materials and Manufacturing Processes, 29(3), 219-252.
Sahu, N. K., & Andhare, A. B. (2019). Multiobjective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms. Journal of Computational Design and Engineering, 6(1), 1-12.
Sahu, N. K., Andhare, A. B., & Raju, R. A. (2018). Evaluation of performance of nanofluid using multiwalled carbon nanotubes for machining of Ti–6AL–4V. Machining science and Technology, 22(3), 476-492.
Saravanamurugan, S., Sundar, B. S., Pranav, R. S., & Shanmugasundaram, A. (2021). Optimization of cutting tool geometry and machining parameters in turning process. Materials Today: Proceedings, 38, 3351-3357.
Shaw, M. C., & Cookson, J. O. (2005). Metal cutting principles (Vol. 2, p. 98). New York: Oxford university press.
Shi, B., & Attia, H. (2010). Current status and future direction in the numerical modeling and simulation of machining processes: a critical literature review. Machining Science and Technology, 14(2), 149-188.
Smith, M. (2009). ABAQUS/Standard User's Manual, Version 6.9.
Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear, 261(7-8), 760-766.
Sumesh, C. S., & Ramesh, A. (2018). Numerical modelling and optimization of dry orthogonal turning of Al6061 T6 alloy. Periodica Polytechnica Mechanical Engineering, 62(3), 196-202. Irfan, S. S., Kumar, M. V., & Rudresha, N. (2019). Optimization of machining parameters in CNC turning of EN45 by Taguchi’s orthogonal array experiments. Materials Today: Proceedings, 18, 2952-2961.
Wu, H., & Guo, L. (2014). Machinability of titanium alloy TC21 under orthogonal turning process. Materials and Manufacturing Processes, 29(11-12), 1441-1445.
Yaich, M., Ayed, Y., Bouaziz, Z., & Germain, G. (2020). A 2D finite element analysis of the effect of numerical parameters on the reliability of Ti6Al4V machining modeling. Machining Science and Technology, 24(4), 509-543.
Zhou, Y., Sun, H., Li, A., Lv, M., Xue, C., & Zhao, J. (2019). FEM simulation-based cutting parameters optimization in machining aluminum-silicon piston alloy ZL109 with PCD tool. Journal of Mechanical Science and Technology, 33(7), 3457-3465.
Zhuang, K., Weng, J., Zhu, D., & Ding, H. (2018). Analytical modeling and experimental validation of cutting forces considering edge effects and size effects with round chamfered ceramic tools. Journal of manufacturing science and engineering, 140(8), 081012.