How to cite this paper
Goyat, V., Verma, S & Garg, R. (2022). Effect of an edge crack on stress concentration around hole surrounded by functionally graded material layer.Engineering Solid Mechanics, 10(4), 325-340.
Refrences
Afshar, A., Daneshyar, A., & Mohammadi, S. (2015). XFEM analysis of fiber bridging in mixed-mode crack propagation in composites. Composite Structures, 125, 314-327.
Agathos, K., Ventura, G., Chatzi, E., & Bordas, S. P. (2018). Stable 3D XFEM/vector level sets for non‐planar 3D crack propagation and comparison of enrichment schemes. International Journal for Numerical Methods in Engineering, 113(2), 252-276.
Agwai, A., Guven, I., & Madenci, E. (2011). Predicting crack propagation with peridynamics: a comparative study. International journal of fracture, 171(1), 65-78.
Aliha, M. R. M., Ebneabbasi, P., reza Karimi, H., & Nikbakht, E. (2021). A novel test device for the direct measurement of tensile strength of rock using ring shape sample. International Journal of Rock Mechanics and Mining Sciences, 139, 104649.
Aliha, M. R. M., Kucheki, H. G., & Berto, F. (2022). Numerical analysis of crack initiation angles and propagation paths in adhesively bonded joints under mixed mode I/II loading using a novel test specimen. Procedia Structural Integrity, 39, 393-402.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts. Theoretical and Applied Fracture Mechanics, 113, 102953.
Anlas, G., Santare, M. H., & Lambros, J. (2000). Numerical calculation of stress intensity factors in functionally graded materials. International Journal of Fracture, 104(2), 131-143.
Arora, P., Srivastava, S., Lohumi, M., & Kumar, H. (2018). Progressive damage response and crack growth direction for multiple through cracks of laminated composite finite plate. Engineering Solid Mechanics, 6(4), 371-389.
Asferg, J. L., Poulsen, P. N., & Nielsen, L. O. (2007). A consistent partly cracked XFEM element for cohesive crack growth. International Journal for Numerical Methods in Engineering, 72(4), 464-485.
Ashrafi, H., Asemi, K., & Shariyat, M. (2013). A three-dimensional boundary element stress and bending analysis of transversely/longitudinally graded plates with circular cutouts under biaxial loading. European Journal of Mechanics-A/Solids, 42, 344-357.
Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5), 601-620.
Bergara, A., Dorado, J. I., Martin-Meizoso, A., & Martínez-Esnaola, J. M. (2017). Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). International Journal of Fatigue, 103, 112-121.
Chen, J., Wu, L., & Du, S. (2000). A modified J integral for functionally graded materials. Mechanics research communications, 27(3), 301-306.
Dave, J. M., & Sharma, D. S. (2016). Stresses and moments in through-thickness functionally graded plate weakened by circular/elliptical cut-out. International Journal of Mechanical Sciences, 105, 146-157.
Dolbow, J. E., & Gosz, M. (2002). On the computation of mixed-mode stress intensity factors in functionally graded materials. International Journal of Solids and Structures, 39(9), 2557-2574.
Enab, T. A. (2014). Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings. Ain Shams Engineering Journal, 5(3), 839-850.
Erdogan, F., & Wu, B. H. (1997). The surface crack problem for a plate with functionally graded properties.
Golewski, G. L., Golewski, P., & Sadowski, T. (2012). Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Computational Materials Science, 62, 75-78.
Gouasmi, S., Megueni, A., Bouchikhi, A. S., Zouggar, K., & Sahli, A. (2015). On the reduction of stress concentration factor around a notch using a functionally graded layer. Materials Research, 18, 971-977.
Goyat, V., Verma, S., & Garg, R. K. (2017). Reduction of stress concentration for a rounded rectangular hole by using a functionally graded material layer. Acta Mechanica, 228(10), 3695-3707.
Goyat, V., Verma, S., & Garg, R. K. (2018). On the reduction of stress concentration factor in an infinite panel using different radial functionally graded materials. International Journal of Materials and Product Technology, 57(1-3), 109-131.
Goyat, V., Verma, S., & Garg, R. K. (2018). Reduction in stress concentration around a pair of circular holes with functionally graded material layer. Acta Mechanica, 229(3), 1045-1060.
Griffith, A. A. (1921). VI. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593), 163-198.
Gross, B. (1964). Stress-intensity factors for a single-edge-notch tension specimen by boundary collocation of a stress function. National Aeronautics and Space Administration.
Gu, P., & Asaro, R. J. (1997). Crack deflection in functionally graded materials. International Journal of Solids and Structures, 34(24), 3085-3098.
Gu, P., Dao, M., & Asaro, R. J. (1999). A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral.
Ham, S., & Hong, H. (2018). XFEM fracture analysis by applying smoothed weighted functions with compact support. Engineering Solid Mechanics, 6(3), 227-240.
Heidari-Rarani, M., & Sayedain, M. (2019). Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theoretical and Applied Fracture Mechanics, 103, 102246.
Hosseini, S. S., Bayesteh, H., & Mohammadi, S. (2013). Thermo-mechanical XFEM crack propagation analysis of functionally graded materials. Materials science and engineering: A, 561, 285-302.
Inglis, C. E. (1913). Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Naval Archit, 55, 219-241.
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate.
Kim, J. H., & Paulino, G. H. (2002). Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. Journal of Applied Mechanics, 69(4), 502-514.
Kim, J. H., & Paulino, G. H. (2005). Consistent formulations of the interaction integral method for fracture of functionally graded materials.
Koizumi, M., & Niino, M. (1995). Overview of FGM research in Japan. Mrs Bulletin, 20(1), 19-21.
Kubair, D. V., & Bhanu-Chandar, B. (2008). Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. International Journal of Mechanical Sciences, 50(4), 732-742.
Mirmohammad, S. H., Safarabadi, M., Karimpour, M., Aliha, M. R. M., & Berto, F. (2018). Study of composite fiber reinforcement of cracked thin-walled pressure vessels utilizing multi-scaling technique based on extended finite element method. Strength of Materials, 50(6), 925-936.
Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International journal for numerical methods in engineering, 46(1), 131-150.
Mohammadi, M., Dryden, J. R., & Jiang, L. (2011). Stress concentration around a hole in a radially inhomogeneous plate. International Journal of Solids and Structures, 48(3-4), 483-491.
Paulino, G. H., & Kim, J. H. (2004). A new approach to compute T-stress in functionally graded materials by means of the interaction integral method. Engineering Fracture Mechanics, 71(13-14), 1907-1950.
Rao, B. N., & Rahman, S. (2003). An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Computational mechanics, 32(1), 40-51.
Sburlati, R. (2013). Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate. International Journal of Solids and Structures, 50(22-23), 3649-3658.
Sburlati, R., Atashipour, S. R., & Atashipour, S. A. (2014). Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer. Composites Part B: Engineering, 61, 99-109.
Shi, P. P. (2015). Stress field of a radially functionally graded panel with a circular elastic inclusion under static anti-plane shear loading. Journal of Mechanical Science and Technology, 29(3), 1163-1173.
Singh, I. V., Mishra, B. K., & Bhattacharya, S. (2011). XFEM simulation of cracks, holes and inclusions in functionally graded materials. International Journal of Mechanics and Materials in Design, 7(3), 199-218.
Yang, Q., & Gao, C. F. (2016). Reduction of the stress concentration around an elliptic hole by using a functionally graded layer. Acta Mechanica, 227(9), 2427-2437.
Yang, Q., Gao, C. F., & Chen, W. (2010). Stress analysis of a functional graded material plate with a circular hole. Archive of Applied Mechanics, 80(8), 895-907.
Yang, Q., Gao, C., & Chen, W. (2012). Stress concentration in a finite functionally graded material plate. Science China Physics, Mechanics and Astronomy, 55(7), 1263-1271.
Yang, Q., Zhu, W., Li, Y., & Zhang, H. (2018). Stress field of a functionally graded coated inclusion of arbitrary shape. Acta Mechanica, 229(4), 1687-1701.
Zeleke, M., Dintwa, E., & Nwaigwe, K. (2021). Stress intensity factor computation of inclined cracked tension plate using XFEM. Engineering Solid Mechanics, 9(4), 363-376.
Agathos, K., Ventura, G., Chatzi, E., & Bordas, S. P. (2018). Stable 3D XFEM/vector level sets for non‐planar 3D crack propagation and comparison of enrichment schemes. International Journal for Numerical Methods in Engineering, 113(2), 252-276.
Agwai, A., Guven, I., & Madenci, E. (2011). Predicting crack propagation with peridynamics: a comparative study. International journal of fracture, 171(1), 65-78.
Aliha, M. R. M., Ebneabbasi, P., reza Karimi, H., & Nikbakht, E. (2021). A novel test device for the direct measurement of tensile strength of rock using ring shape sample. International Journal of Rock Mechanics and Mining Sciences, 139, 104649.
Aliha, M. R. M., Kucheki, H. G., & Berto, F. (2022). Numerical analysis of crack initiation angles and propagation paths in adhesively bonded joints under mixed mode I/II loading using a novel test specimen. Procedia Structural Integrity, 39, 393-402.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts. Theoretical and Applied Fracture Mechanics, 113, 102953.
Anlas, G., Santare, M. H., & Lambros, J. (2000). Numerical calculation of stress intensity factors in functionally graded materials. International Journal of Fracture, 104(2), 131-143.
Arora, P., Srivastava, S., Lohumi, M., & Kumar, H. (2018). Progressive damage response and crack growth direction for multiple through cracks of laminated composite finite plate. Engineering Solid Mechanics, 6(4), 371-389.
Asferg, J. L., Poulsen, P. N., & Nielsen, L. O. (2007). A consistent partly cracked XFEM element for cohesive crack growth. International Journal for Numerical Methods in Engineering, 72(4), 464-485.
Ashrafi, H., Asemi, K., & Shariyat, M. (2013). A three-dimensional boundary element stress and bending analysis of transversely/longitudinally graded plates with circular cutouts under biaxial loading. European Journal of Mechanics-A/Solids, 42, 344-357.
Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International journal for numerical methods in engineering, 45(5), 601-620.
Bergara, A., Dorado, J. I., Martin-Meizoso, A., & Martínez-Esnaola, J. M. (2017). Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). International Journal of Fatigue, 103, 112-121.
Chen, J., Wu, L., & Du, S. (2000). A modified J integral for functionally graded materials. Mechanics research communications, 27(3), 301-306.
Dave, J. M., & Sharma, D. S. (2016). Stresses and moments in through-thickness functionally graded plate weakened by circular/elliptical cut-out. International Journal of Mechanical Sciences, 105, 146-157.
Dolbow, J. E., & Gosz, M. (2002). On the computation of mixed-mode stress intensity factors in functionally graded materials. International Journal of Solids and Structures, 39(9), 2557-2574.
Enab, T. A. (2014). Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings. Ain Shams Engineering Journal, 5(3), 839-850.
Erdogan, F., & Wu, B. H. (1997). The surface crack problem for a plate with functionally graded properties.
Golewski, G. L., Golewski, P., & Sadowski, T. (2012). Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Computational Materials Science, 62, 75-78.
Gouasmi, S., Megueni, A., Bouchikhi, A. S., Zouggar, K., & Sahli, A. (2015). On the reduction of stress concentration factor around a notch using a functionally graded layer. Materials Research, 18, 971-977.
Goyat, V., Verma, S., & Garg, R. K. (2017). Reduction of stress concentration for a rounded rectangular hole by using a functionally graded material layer. Acta Mechanica, 228(10), 3695-3707.
Goyat, V., Verma, S., & Garg, R. K. (2018). On the reduction of stress concentration factor in an infinite panel using different radial functionally graded materials. International Journal of Materials and Product Technology, 57(1-3), 109-131.
Goyat, V., Verma, S., & Garg, R. K. (2018). Reduction in stress concentration around a pair of circular holes with functionally graded material layer. Acta Mechanica, 229(3), 1045-1060.
Griffith, A. A. (1921). VI. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593), 163-198.
Gross, B. (1964). Stress-intensity factors for a single-edge-notch tension specimen by boundary collocation of a stress function. National Aeronautics and Space Administration.
Gu, P., & Asaro, R. J. (1997). Crack deflection in functionally graded materials. International Journal of Solids and Structures, 34(24), 3085-3098.
Gu, P., Dao, M., & Asaro, R. J. (1999). A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral.
Ham, S., & Hong, H. (2018). XFEM fracture analysis by applying smoothed weighted functions with compact support. Engineering Solid Mechanics, 6(3), 227-240.
Heidari-Rarani, M., & Sayedain, M. (2019). Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theoretical and Applied Fracture Mechanics, 103, 102246.
Hosseini, S. S., Bayesteh, H., & Mohammadi, S. (2013). Thermo-mechanical XFEM crack propagation analysis of functionally graded materials. Materials science and engineering: A, 561, 285-302.
Inglis, C. E. (1913). Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Naval Archit, 55, 219-241.
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate.
Kim, J. H., & Paulino, G. H. (2002). Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. Journal of Applied Mechanics, 69(4), 502-514.
Kim, J. H., & Paulino, G. H. (2005). Consistent formulations of the interaction integral method for fracture of functionally graded materials.
Koizumi, M., & Niino, M. (1995). Overview of FGM research in Japan. Mrs Bulletin, 20(1), 19-21.
Kubair, D. V., & Bhanu-Chandar, B. (2008). Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. International Journal of Mechanical Sciences, 50(4), 732-742.
Mirmohammad, S. H., Safarabadi, M., Karimpour, M., Aliha, M. R. M., & Berto, F. (2018). Study of composite fiber reinforcement of cracked thin-walled pressure vessels utilizing multi-scaling technique based on extended finite element method. Strength of Materials, 50(6), 925-936.
Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International journal for numerical methods in engineering, 46(1), 131-150.
Mohammadi, M., Dryden, J. R., & Jiang, L. (2011). Stress concentration around a hole in a radially inhomogeneous plate. International Journal of Solids and Structures, 48(3-4), 483-491.
Paulino, G. H., & Kim, J. H. (2004). A new approach to compute T-stress in functionally graded materials by means of the interaction integral method. Engineering Fracture Mechanics, 71(13-14), 1907-1950.
Rao, B. N., & Rahman, S. (2003). An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Computational mechanics, 32(1), 40-51.
Sburlati, R. (2013). Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate. International Journal of Solids and Structures, 50(22-23), 3649-3658.
Sburlati, R., Atashipour, S. R., & Atashipour, S. A. (2014). Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer. Composites Part B: Engineering, 61, 99-109.
Shi, P. P. (2015). Stress field of a radially functionally graded panel with a circular elastic inclusion under static anti-plane shear loading. Journal of Mechanical Science and Technology, 29(3), 1163-1173.
Singh, I. V., Mishra, B. K., & Bhattacharya, S. (2011). XFEM simulation of cracks, holes and inclusions in functionally graded materials. International Journal of Mechanics and Materials in Design, 7(3), 199-218.
Yang, Q., & Gao, C. F. (2016). Reduction of the stress concentration around an elliptic hole by using a functionally graded layer. Acta Mechanica, 227(9), 2427-2437.
Yang, Q., Gao, C. F., & Chen, W. (2010). Stress analysis of a functional graded material plate with a circular hole. Archive of Applied Mechanics, 80(8), 895-907.
Yang, Q., Gao, C., & Chen, W. (2012). Stress concentration in a finite functionally graded material plate. Science China Physics, Mechanics and Astronomy, 55(7), 1263-1271.
Yang, Q., Zhu, W., Li, Y., & Zhang, H. (2018). Stress field of a functionally graded coated inclusion of arbitrary shape. Acta Mechanica, 229(4), 1687-1701.
Zeleke, M., Dintwa, E., & Nwaigwe, K. (2021). Stress intensity factor computation of inclined cracked tension plate using XFEM. Engineering Solid Mechanics, 9(4), 363-376.