How to cite this paper
Obiko, J., Chown, L & Whitefield, D. (2022). Prediction of flow stress characteristics of P92 steel using a simple physically-based constitutive modelling.Engineering Solid Mechanics, 10(3), 191-200.
Refrences
Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, 20(7), 887–897. doi: 10.1016/0001-6160(72)90082-X.
Cabrera, J. M., Jonas, J. J., & Prado, J. M. (1996). Flow behaviour of medium carbon microalloyed steel under hot working conditions. Materials Science and Technology, 12(7), 579–585. doi: 10.1179/026708396790166019.
Carsí, M., Pen˜alba, F., Rieiro, I., & Ruano A. (2011). High temperature workability behavior of a modified P92 steel’, International Journal of Materials Research, 102(11), 1378–1383. doi: 10.3139/146.110603.
Czyrska-filemonowicz, A., Zielińska-lipiec, A., & Ennis, P. J. (2006). Modified 9 % Cr Steels for Advanced Power Generation : Microstructure and Properties. Journal of Achievements in Materials and Manufacturing Engineering, 19(2), 43–48. Available at: http://www.edu.ptnss.pb.journalamme.org/papers_vol19_2/1309.pdf.
Gao, F., Liu, Z. Misra, R., Liu, H., & Yu, F. (2014). Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb. Metals and Materials International, 20(5), 939–951. doi: 10.1007/s12540-014-5020-z.
Guo, Z., Saunders, N., Schillé, P., & Miodownik, A. P. (2009). Material properties for process simulation. Materials Science and Engineering A, 499(1–2), pp. 7–13. doi: 10.1016/j.msea.2007.09.097.
Haghdadi, N., Martin, D., & Hodgson, P. (2016). Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Materials and Design. Elsevier B.V., 106, 420–427. doi: 10.1016/j.matdes.2016.05.118.
Hajari, A., Maryam, M., Abbasi, S., & Badri, H. (2017). Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy. Materials Science and Engineering A. Elsevier, 681(September 2016), 103–113. doi: 10.1016/j.msea.2016.11.002.
He, A., Xie, G., Zhang, H., & Wang, X. (2013). A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Materials and Design, 52, 677–685. doi: 10.1016/j.matdes.2013.06.010.
He, A., Xie, G., Zhang, H., & Wang X. (2014). A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Materials and Design, 56, 122–127. doi: 10.1016/j.matdes.2013.10.080.
He, A., Xie, G., Yang, X., Wang, X., & Zhang, H. (2015). A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Computational Materials Science, 98, 64–69. doi: 10.1016/j.commatsci.2014.10.044.
Huang Y., Wang, S., Xiao, Z., & Liu H. (2017). Critical Condition of Dynamic Recrystallization in 35CrMo Steel. Metals, 7(5), 161. doi: 10.3390/met7050161.
Jha, J S., Tewari, A. M., & Sushil, T. S. (2017). Constitutive Relations for Ti-6Al-4V Hot Working. Procedia Engineering, 173, 755–762. doi: 10.1016/j.proeng.2016.12.089.
Lin, Y. C., Xia, Y., Chen, X. and Chen, M. (2010). Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Computational Materials Science, 50(1), 227–233. doi: 10.1016/j.commatsci.2010.08.003.
Lin, C., Chen, X., Wen, D., & Chen, M. (2014). A physically-based constitutive model for a typical nickel-based superalloy. Computational Materials Science, 83, 282–289. doi: 10.1016/j.commatsci.2013.11.003.
Lin, Y. C., Chen, M. S., & Zhong, J. (2008a). Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Computational Materials Science, 42(3), 470–477. doi: 10.1016/j.commatsci.2007.08.011.
Lin, Y. C., Chen, M. S., & Zhong, J. (2008b). Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mechanics Research Communications, 35(3), 142–150. doi: 10.1016/j.mechrescom.2007.10.002.
Lin, Y. C., & Chen, X. M. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 32(4), 1733-1759.
Luan, J., Sun, C., Li, X., & Zhang, Q. (2014). Constitutive model for AZ31 magnesium alloy based on isothermal compression test. Materials Science and Technology, 30(2), 211–219. doi: 10.1179/1743284713Y.0000000341.
Mirzadeh, H., Cabrera, J. M., & Najafizadeh, A. (2011). Constitutive relationships for hot deformation of austenite. Acta Materialia, 59(16), pp. 6441–6448. doi: 10.1016/j.actamat.2011.07.008.
Peng, Y., Chen, T., Chung, T., Jeng, S., Huang, R., & Tsay, L. (2017). Creep rupture of the simulated HAZ of T92 steel compared to that of a T91 steel. Materials, 10(2). doi: 10.3390/ma10020139.
Rastegari, H., Kermanpur, A., Najafizadeh, A., Porter, D., & Somani, M. (2015). Warm deformation processing maps for the plain eutectoid steels. Journal of Alloys and Compounds, 626, pp. 136–144. doi: 10.1016/j.jallcom.2014.11.170.
Samantaray, D., Mandal, S., & Bhaduri, A. K. (2010). Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel. Materials and Design, 31(2), pp. 981–984. doi: 10.1016/j.matdes.2009.08.012.
Seol, D., Won, Y., Yeo, T., Oh, K., Park, J., & Yim, C. (1999). High Temperature Deformation Behavior of Carbon Steel in the Austenite and Delta-Ferrite Regions. ISIJ International, 39(1), pp. 91–98. doi: 10.2355/isijinternational.39.91.
Shi, R. X. and Liu, Z. D. (2011). Hot deformation behavior of P92 steel used for ultra-super-critical power plants. Journal of Iron and Steel Research International. Central Iron and Steel Research Institute, 18(7), 53–58. doi: 10.1016/S1006-706X(11)60090-3.
Wang, L., Liu, F., Cheng, J. J., Zuo, Q., & Chen, C. F. (2015). Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy. Journal of Alloys and Compounds, 623, 69–78. doi: 10.1016/j.jallcom.2014.10.034.
Xiao, X., Liu, G. Q., Hu, B. F., Zheng, X., Wang, L. N., Chen, S. J., & Ullah, A. (2012). A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Computational Materials Science, 62, 227–234. doi: 10.1016/j.commatsci.2012.05.053.
Yang, Z., Li, Y., Li, Y., Zhang, F., & Zhang, M. (2016). Constitutive Modeling for Flow Behavior of Medium-Carbon Bainitic Steel and Its Processing Maps. Journal of Materials Engineering and Performance, 25(11), 5030–5039. doi: 10.1007/s11665-016-2301-3.
Yanushkevich, Z., Lugovskaya, A., Belyakov, A., & Kaibyshev, R. (2016). Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science and Engineering A. Elsevier, 667, 279–285. doi: 10.1016/j.msea.2016.05.008.
Zhang P., Yi C., Chen G., Qin H., & Wang C. (2016). Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy. Metals, 6(7), 161. doi: 10.3390/met6070161.
Zhang, Z. J., Dai, G. Z., Wu, S. N., Dong, L. X., & Liu, L. L. (2009). Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D. Materials Science and Engineering A, 499(1–2), pp. 49–52. doi: 10.1016/j.msea.2007.11.135.
Zhu L., He J., & Zhang, Y. (2018). A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Materials Research Express. IOP Publishing, 5, pp. 1–11.
Cabrera, J. M., Jonas, J. J., & Prado, J. M. (1996). Flow behaviour of medium carbon microalloyed steel under hot working conditions. Materials Science and Technology, 12(7), 579–585. doi: 10.1179/026708396790166019.
Carsí, M., Pen˜alba, F., Rieiro, I., & Ruano A. (2011). High temperature workability behavior of a modified P92 steel’, International Journal of Materials Research, 102(11), 1378–1383. doi: 10.3139/146.110603.
Czyrska-filemonowicz, A., Zielińska-lipiec, A., & Ennis, P. J. (2006). Modified 9 % Cr Steels for Advanced Power Generation : Microstructure and Properties. Journal of Achievements in Materials and Manufacturing Engineering, 19(2), 43–48. Available at: http://www.edu.ptnss.pb.journalamme.org/papers_vol19_2/1309.pdf.
Gao, F., Liu, Z. Misra, R., Liu, H., & Yu, F. (2014). Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb. Metals and Materials International, 20(5), 939–951. doi: 10.1007/s12540-014-5020-z.
Guo, Z., Saunders, N., Schillé, P., & Miodownik, A. P. (2009). Material properties for process simulation. Materials Science and Engineering A, 499(1–2), pp. 7–13. doi: 10.1016/j.msea.2007.09.097.
Haghdadi, N., Martin, D., & Hodgson, P. (2016). Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Materials and Design. Elsevier B.V., 106, 420–427. doi: 10.1016/j.matdes.2016.05.118.
Hajari, A., Maryam, M., Abbasi, S., & Badri, H. (2017). Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy. Materials Science and Engineering A. Elsevier, 681(September 2016), 103–113. doi: 10.1016/j.msea.2016.11.002.
He, A., Xie, G., Zhang, H., & Wang, X. (2013). A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Materials and Design, 52, 677–685. doi: 10.1016/j.matdes.2013.06.010.
He, A., Xie, G., Zhang, H., & Wang X. (2014). A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Materials and Design, 56, 122–127. doi: 10.1016/j.matdes.2013.10.080.
He, A., Xie, G., Yang, X., Wang, X., & Zhang, H. (2015). A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Computational Materials Science, 98, 64–69. doi: 10.1016/j.commatsci.2014.10.044.
Huang Y., Wang, S., Xiao, Z., & Liu H. (2017). Critical Condition of Dynamic Recrystallization in 35CrMo Steel. Metals, 7(5), 161. doi: 10.3390/met7050161.
Jha, J S., Tewari, A. M., & Sushil, T. S. (2017). Constitutive Relations for Ti-6Al-4V Hot Working. Procedia Engineering, 173, 755–762. doi: 10.1016/j.proeng.2016.12.089.
Lin, Y. C., Xia, Y., Chen, X. and Chen, M. (2010). Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate. Computational Materials Science, 50(1), 227–233. doi: 10.1016/j.commatsci.2010.08.003.
Lin, C., Chen, X., Wen, D., & Chen, M. (2014). A physically-based constitutive model for a typical nickel-based superalloy. Computational Materials Science, 83, 282–289. doi: 10.1016/j.commatsci.2013.11.003.
Lin, Y. C., Chen, M. S., & Zhong, J. (2008a). Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Computational Materials Science, 42(3), 470–477. doi: 10.1016/j.commatsci.2007.08.011.
Lin, Y. C., Chen, M. S., & Zhong, J. (2008b). Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mechanics Research Communications, 35(3), 142–150. doi: 10.1016/j.mechrescom.2007.10.002.
Lin, Y. C., & Chen, X. M. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 32(4), 1733-1759.
Luan, J., Sun, C., Li, X., & Zhang, Q. (2014). Constitutive model for AZ31 magnesium alloy based on isothermal compression test. Materials Science and Technology, 30(2), 211–219. doi: 10.1179/1743284713Y.0000000341.
Mirzadeh, H., Cabrera, J. M., & Najafizadeh, A. (2011). Constitutive relationships for hot deformation of austenite. Acta Materialia, 59(16), pp. 6441–6448. doi: 10.1016/j.actamat.2011.07.008.
Peng, Y., Chen, T., Chung, T., Jeng, S., Huang, R., & Tsay, L. (2017). Creep rupture of the simulated HAZ of T92 steel compared to that of a T91 steel. Materials, 10(2). doi: 10.3390/ma10020139.
Rastegari, H., Kermanpur, A., Najafizadeh, A., Porter, D., & Somani, M. (2015). Warm deformation processing maps for the plain eutectoid steels. Journal of Alloys and Compounds, 626, pp. 136–144. doi: 10.1016/j.jallcom.2014.11.170.
Samantaray, D., Mandal, S., & Bhaduri, A. K. (2010). Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel. Materials and Design, 31(2), pp. 981–984. doi: 10.1016/j.matdes.2009.08.012.
Seol, D., Won, Y., Yeo, T., Oh, K., Park, J., & Yim, C. (1999). High Temperature Deformation Behavior of Carbon Steel in the Austenite and Delta-Ferrite Regions. ISIJ International, 39(1), pp. 91–98. doi: 10.2355/isijinternational.39.91.
Shi, R. X. and Liu, Z. D. (2011). Hot deformation behavior of P92 steel used for ultra-super-critical power plants. Journal of Iron and Steel Research International. Central Iron and Steel Research Institute, 18(7), 53–58. doi: 10.1016/S1006-706X(11)60090-3.
Wang, L., Liu, F., Cheng, J. J., Zuo, Q., & Chen, C. F. (2015). Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy. Journal of Alloys and Compounds, 623, 69–78. doi: 10.1016/j.jallcom.2014.10.034.
Xiao, X., Liu, G. Q., Hu, B. F., Zheng, X., Wang, L. N., Chen, S. J., & Ullah, A. (2012). A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel. Computational Materials Science, 62, 227–234. doi: 10.1016/j.commatsci.2012.05.053.
Yang, Z., Li, Y., Li, Y., Zhang, F., & Zhang, M. (2016). Constitutive Modeling for Flow Behavior of Medium-Carbon Bainitic Steel and Its Processing Maps. Journal of Materials Engineering and Performance, 25(11), 5030–5039. doi: 10.1007/s11665-016-2301-3.
Yanushkevich, Z., Lugovskaya, A., Belyakov, A., & Kaibyshev, R. (2016). Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science and Engineering A. Elsevier, 667, 279–285. doi: 10.1016/j.msea.2016.05.008.
Zhang P., Yi C., Chen G., Qin H., & Wang C. (2016). Constitutive Model Based on Dynamic Recrystallization Behavior during Thermal Deformation of a Nickel-Based Superalloy. Metals, 6(7), 161. doi: 10.3390/met6070161.
Zhang, Z. J., Dai, G. Z., Wu, S. N., Dong, L. X., & Liu, L. L. (2009). Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D. Materials Science and Engineering A, 499(1–2), pp. 49–52. doi: 10.1016/j.msea.2007.11.135.
Zhu L., He J., & Zhang, Y. (2018). A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Materials Research Express. IOP Publishing, 5, pp. 1–11.