How to cite this paper
Sajjadpour, M & Kordkheili, S. (2022). An investigation on dynamic behavior of rotating shafts using a pipe elbow finite element formulation.Engineering Solid Mechanics, 10(2), 179-190.
Refrences
Eshleman, R. L., & Eubanks, R. A. (1969). On the critical speeds of a continuous rotor. Journal of Engineering Industry, 91(4), 1180-1188
Hosseini Kordkheili, S. A., & Bahai, H. (2008, January). Nonlinear Dynamic Analysis of Flexible Riser Structures. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 48203, pp. 693-698).
Ishida, Y., Inagaki, M., Ejima, R., & Hayashi, A. (2009). Nonlinear resonances and self-excited oscillations of a rotor caused by radial clearance and collision. Nonlinear Dynamics, 57(4), 593-605.
Jahromi, A. F., Bhat, R. B., & Xie, W. F. (2015). Forward and backward whirling of a rotor with gyroscopic effect. In Vibration Engineering and Technology of Machinery (pp. 879-887). Springer, Cham.
Kordkheili, S. H., Naghdabadi, R., & Jabbarzadeh, M. (2008). A geometrically nonlinear finite element formulation for shells using a particular linearization method. Finite elements in analysis and design, 44(3), 123-130.
Lien-Wen, C., & Der-Ming, K. (1991). Finite element analysis of natural whirl speeds of rotating shafts. Computers & Structures, 40(3), 741-747.
Nandi, A., & Neogy, S. (2001). Modelling of rotors with three-dimensional solid finite elements. The Journal of Strain Analysis for Engineering Design, 36(4), 359-371.
Nelson, H. D. (1980). A finite rotating shaft element using Timoshenko beam theory. Journal of Mechanical Design, 102(4), 793-803
Nelson, H. D., & McVaugh, J. M. (1976). The dynamics of rotor-bearing systems using finite elements. Journal of Engineering Industrial, 98(2), 593-600.
Shames, I. H., & Dym, C. L. (2017). Energy and finite element methods in structural mechanics: SI units edition. Routledge.
Sinou, J. J., Villa, C., & Thouverez, F. (2005). Experimental and numerical investigations of a flexible rotor on flexible bearing supports. International Journal of Rotating Machinery, 3, 179-189.
Sousa, M. S., Del Claro, V. T. S., Cavalini, A. A., & Steffen, V. (2017). Numerical investigation on the dynamic behavior of an onboard rotor system by using the fem approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(7), 2447-2458.
Stephenson, R. W., & Rouch, K. E. (1993). Modeling rotating shafts using axisymmetric solid finite elements with matrix reduction.
Tamrakar, R., & Mittal, N. (2016). Campbell diagram analysis of open cracked rotor. Engineering Solid Mechanics, 4(3), 159-166.
Thomson, W. T. (1981). Theory of Vibrations with Applications, Prentice-Hall Inc., Englewood Cliffs, NJ 07632.
Tiwari, R. (2017). Rotor systems: analysis and identification. CRC press.
Torabi, K., & Afshari, H. (2016). Exact solution for whirling analysis of axial-loaded Timoshenko rotor using basic functions. Engineering Solid Mechanics, 4(2), 97-108.
Vest, T. A., & Darlow, M. S. (1990). A modified conical beam element based on finite element analysis: experimental correlations. Journal of Vibration Acoustic, 112(3), 350-354
Hosseini Kordkheili, S. A., & Bahai, H. (2008, January). Nonlinear Dynamic Analysis of Flexible Riser Structures. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 48203, pp. 693-698).
Ishida, Y., Inagaki, M., Ejima, R., & Hayashi, A. (2009). Nonlinear resonances and self-excited oscillations of a rotor caused by radial clearance and collision. Nonlinear Dynamics, 57(4), 593-605.
Jahromi, A. F., Bhat, R. B., & Xie, W. F. (2015). Forward and backward whirling of a rotor with gyroscopic effect. In Vibration Engineering and Technology of Machinery (pp. 879-887). Springer, Cham.
Kordkheili, S. H., Naghdabadi, R., & Jabbarzadeh, M. (2008). A geometrically nonlinear finite element formulation for shells using a particular linearization method. Finite elements in analysis and design, 44(3), 123-130.
Lien-Wen, C., & Der-Ming, K. (1991). Finite element analysis of natural whirl speeds of rotating shafts. Computers & Structures, 40(3), 741-747.
Nandi, A., & Neogy, S. (2001). Modelling of rotors with three-dimensional solid finite elements. The Journal of Strain Analysis for Engineering Design, 36(4), 359-371.
Nelson, H. D. (1980). A finite rotating shaft element using Timoshenko beam theory. Journal of Mechanical Design, 102(4), 793-803
Nelson, H. D., & McVaugh, J. M. (1976). The dynamics of rotor-bearing systems using finite elements. Journal of Engineering Industrial, 98(2), 593-600.
Shames, I. H., & Dym, C. L. (2017). Energy and finite element methods in structural mechanics: SI units edition. Routledge.
Sinou, J. J., Villa, C., & Thouverez, F. (2005). Experimental and numerical investigations of a flexible rotor on flexible bearing supports. International Journal of Rotating Machinery, 3, 179-189.
Sousa, M. S., Del Claro, V. T. S., Cavalini, A. A., & Steffen, V. (2017). Numerical investigation on the dynamic behavior of an onboard rotor system by using the fem approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(7), 2447-2458.
Stephenson, R. W., & Rouch, K. E. (1993). Modeling rotating shafts using axisymmetric solid finite elements with matrix reduction.
Tamrakar, R., & Mittal, N. (2016). Campbell diagram analysis of open cracked rotor. Engineering Solid Mechanics, 4(3), 159-166.
Thomson, W. T. (1981). Theory of Vibrations with Applications, Prentice-Hall Inc., Englewood Cliffs, NJ 07632.
Tiwari, R. (2017). Rotor systems: analysis and identification. CRC press.
Torabi, K., & Afshari, H. (2016). Exact solution for whirling analysis of axial-loaded Timoshenko rotor using basic functions. Engineering Solid Mechanics, 4(2), 97-108.
Vest, T. A., & Darlow, M. S. (1990). A modified conical beam element based on finite element analysis: experimental correlations. Journal of Vibration Acoustic, 112(3), 350-354