How to cite this paper
Rodríguez, J. (2022). Comparison of stress separation procedures. experiments versus theoretical formulation.Engineering Solid Mechanics, 10(2), 153-164.
Refrences
Allison, I. M. (1998). A rapid method for stress separation in two dimensional photoelastic models. Strain, 35(3), 83–86.
Anthony, N., Cadenazzi, G., Kirkwood, H., Huwald, E., Nugent, K., & Abbey, B. (2016). A Direct Approach to In-Plane Stress Separation using Photoelastic Ptychography. Scientific Reports, 6.
Castillo, I. M., Peñaranda, A. E., & Diaz, J. G. (2020). Implementación de la Técnica de Correlación de Imágenes Digitales con Software Libre. Aibi, 8(3), 25–32.
Cavaco, M. A. M., R.Viotti, M., & Albertazzi Jr, G. A. (2018). Pipeline Stress Analysis Through Stress Function Fittings. Latin American Journal of Solids and Structures, 15(9).
Dulieu-Smith, J. M. (1995). Alternative calibration techniques for quantitative thermoelastic stress analysis. Strain, 31(1), 9–16.
Freire, J. L., & Voloshin, A. (2009). PHOTOELASTICITY. In Encyclopedia of Life Support Systems (EOLSS) (1st ed.). Oxford ,UK: UNESCO. Retrieved from http://www.eolss.net/outlinecomponents/Experimental-Mechanics.aspx
Jobin, T. M., Khaderi, S. N., & Ramji, M. (2020). Experimental evaluation of the strain intensity factor at the rigid line inclusion tip embedded in an epoxy matrix using digital image correlation. Theoretical and Applied Fracture Mechanics, 106, 102425.
Lesniak, J. R., Boyce, B. R., & Howenwate, G. (1998). Thermoelastic Measurement Under Random Loading. In Spring SEM conference. Houston, TX: SEM. https://doi.org/10.1111/j.1747-1567.1998.tb02410.x
Marsavina, L., & Tomlinson, R. A. (2013). A review of using thermoelasticity for structural integrity assessment. Frattura Ed Integrità Strutturale, 8(27), 13–20.
Masuda, Y. (2004). The Past and Present or a History of Photoelasticity and its Future Image of Becoming Automated. Journal of the Japanese Society for Experimental Mechanics, 4(1), 3–10.
Molteno, M. R., & Becker, T. H. (2015). Mode I – III Decomposition of the J -integral from DIC Displacement Data. Strain, 51(6), 492–503.
Murakami, Y., & Yoshimura, M. (1995). Development of System Resolving All Stress Components in Thermoelastic Stress Analysis. JSME International Journal Series A, 61, 2482–2488.
Niedenfuhr, W. F. (1957). On Choosing Stress Functions in Rectangular Coordinates. Journal of the Aeronautical Sciences, 24(6), 456–472.
Ramesh, K. (2000). Stress Separation Techniques. In K. Ramesh (Ed.), Digital Photoelasticity (pp. 303–346). Berlin: Springer Verlag.
Rao Kavati, D., & Nomura, S. (2006). Airy stress function for two dimensional inclusion problems. In ASME International Mechanical Engineering Congress and Exposition, IMECE. Chicago.
Sadd, M. H. (2014). Elasticity. (Elsevier, Ed.) (3rd ed.). Kingston, Rhode Island: Elsevier.
Sakagami, T., Kubo, S., Fujinami, Y., & Kojima, Y. (2004). Experimental Stress Separation Technique Using Thermoelasticity and Photoelasticity and Its Application to Fracture Mechanics. JSME International Journal Series A, 47(3), 298–304.
Selvadurai, A. P. (2000). The biharmonic equation. In Partial Differential Equations in Mechanics 2. Berlin: Springer.
Solarguen, M., Alegre Calderón, J., Bravo Díez, P. M., & Cuesta Segura, I. (2009). Stress-separation techniques in photoelasticity: A review. The Journal of Strain Analysis for Engineering Design, 45(1), 1–17.
Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Boston: Springer.
Tabanyukhova, M. (2019). Photoelastic Analysis of the Stressed State of a Flat Element with Geometrical Stress Concentrators (Cutout and Cuts). Key Engineering Materials, 827, 330–335.
Triana-Infante, C. A., Varón-Durán, M., & Pastor-Abellán, D. (2014). Validación de sensores basados en redes de difracción de bragg (FBGS) para deformación y temperatura. ITECKNE, 2, 172–182.
Vishay. (2011). Principal Stress Separation in PhotoStress® Measurements. Document Number: 11217. USA.
Vormwald, M., Hos, Y., Freire, J. L. F., Gonzáles, G. L. G., & Díaz, J. G. (2017). Variable mode-mixity during fatigue cycles – crack tip parameters determined from displacement fields measured by digital image correlation. Frattura Ed Integrità Strutturale, 11(41), 314–322.
Yoneyama, S., Morimoto, Y., & Kawamura, M. (2005). Two-dimensional stress separation using phase-stepping interferometric photoelasticity. Measurement Science and Technology, 16.
Anthony, N., Cadenazzi, G., Kirkwood, H., Huwald, E., Nugent, K., & Abbey, B. (2016). A Direct Approach to In-Plane Stress Separation using Photoelastic Ptychography. Scientific Reports, 6.
Castillo, I. M., Peñaranda, A. E., & Diaz, J. G. (2020). Implementación de la Técnica de Correlación de Imágenes Digitales con Software Libre. Aibi, 8(3), 25–32.
Cavaco, M. A. M., R.Viotti, M., & Albertazzi Jr, G. A. (2018). Pipeline Stress Analysis Through Stress Function Fittings. Latin American Journal of Solids and Structures, 15(9).
Dulieu-Smith, J. M. (1995). Alternative calibration techniques for quantitative thermoelastic stress analysis. Strain, 31(1), 9–16.
Freire, J. L., & Voloshin, A. (2009). PHOTOELASTICITY. In Encyclopedia of Life Support Systems (EOLSS) (1st ed.). Oxford ,UK: UNESCO. Retrieved from http://www.eolss.net/outlinecomponents/Experimental-Mechanics.aspx
Jobin, T. M., Khaderi, S. N., & Ramji, M. (2020). Experimental evaluation of the strain intensity factor at the rigid line inclusion tip embedded in an epoxy matrix using digital image correlation. Theoretical and Applied Fracture Mechanics, 106, 102425.
Lesniak, J. R., Boyce, B. R., & Howenwate, G. (1998). Thermoelastic Measurement Under Random Loading. In Spring SEM conference. Houston, TX: SEM. https://doi.org/10.1111/j.1747-1567.1998.tb02410.x
Marsavina, L., & Tomlinson, R. A. (2013). A review of using thermoelasticity for structural integrity assessment. Frattura Ed Integrità Strutturale, 8(27), 13–20.
Masuda, Y. (2004). The Past and Present or a History of Photoelasticity and its Future Image of Becoming Automated. Journal of the Japanese Society for Experimental Mechanics, 4(1), 3–10.
Molteno, M. R., & Becker, T. H. (2015). Mode I – III Decomposition of the J -integral from DIC Displacement Data. Strain, 51(6), 492–503.
Murakami, Y., & Yoshimura, M. (1995). Development of System Resolving All Stress Components in Thermoelastic Stress Analysis. JSME International Journal Series A, 61, 2482–2488.
Niedenfuhr, W. F. (1957). On Choosing Stress Functions in Rectangular Coordinates. Journal of the Aeronautical Sciences, 24(6), 456–472.
Ramesh, K. (2000). Stress Separation Techniques. In K. Ramesh (Ed.), Digital Photoelasticity (pp. 303–346). Berlin: Springer Verlag.
Rao Kavati, D., & Nomura, S. (2006). Airy stress function for two dimensional inclusion problems. In ASME International Mechanical Engineering Congress and Exposition, IMECE. Chicago.
Sadd, M. H. (2014). Elasticity. (Elsevier, Ed.) (3rd ed.). Kingston, Rhode Island: Elsevier.
Sakagami, T., Kubo, S., Fujinami, Y., & Kojima, Y. (2004). Experimental Stress Separation Technique Using Thermoelasticity and Photoelasticity and Its Application to Fracture Mechanics. JSME International Journal Series A, 47(3), 298–304.
Selvadurai, A. P. (2000). The biharmonic equation. In Partial Differential Equations in Mechanics 2. Berlin: Springer.
Solarguen, M., Alegre Calderón, J., Bravo Díez, P. M., & Cuesta Segura, I. (2009). Stress-separation techniques in photoelasticity: A review. The Journal of Strain Analysis for Engineering Design, 45(1), 1–17.
Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Boston: Springer.
Tabanyukhova, M. (2019). Photoelastic Analysis of the Stressed State of a Flat Element with Geometrical Stress Concentrators (Cutout and Cuts). Key Engineering Materials, 827, 330–335.
Triana-Infante, C. A., Varón-Durán, M., & Pastor-Abellán, D. (2014). Validación de sensores basados en redes de difracción de bragg (FBGS) para deformación y temperatura. ITECKNE, 2, 172–182.
Vishay. (2011). Principal Stress Separation in PhotoStress® Measurements. Document Number: 11217. USA.
Vormwald, M., Hos, Y., Freire, J. L. F., Gonzáles, G. L. G., & Díaz, J. G. (2017). Variable mode-mixity during fatigue cycles – crack tip parameters determined from displacement fields measured by digital image correlation. Frattura Ed Integrità Strutturale, 11(41), 314–322.
Yoneyama, S., Morimoto, Y., & Kawamura, M. (2005). Two-dimensional stress separation using phase-stepping interferometric photoelasticity. Measurement Science and Technology, 16.