How to cite this paper
Pinto, V., Rocha, L., Santos, E & Isoldi, L. (2022). Numerical analysis of stiffened plates subjected to transverse uniform load through the constructal design method.Engineering Solid Mechanics, 10(1), 99-108.
Refrences
Ansys Academic Research Mechanical, Release 19, Help System, Element Reference, ANSYS, Inc.
Bedair, O. K. (2006). Analysis and Limit State Design of stiffened plates and shells: A world view. Applied Mechanics Reviews, 62(2), 01-16. DOI: 10.1115/1.3077137
Bejan, A. & Zane, J. P.(2012). Design in Nature: How the Constructal Law governs evolution in biology, physics, technology, and social organizations. New York: Doubleday.
Carrijo, E.C, Paiva, J.B. & Giogo, J.S. (1999). A numerical and experimental study of stiffened plates in bending. Transactions on Modelling and Simulation, 21, 12-18, DOI: 10.2495/CMEM990021
Cunha, M. L., Troina, G. S., Rocha, L. A. O., dos Santos, E. D., Isoldi, L. A. (2018). Computational modeling and Constructal Design method applied to the geometric optimization of stiffened steel plates subjected to uniform transverse load. Research on Engineering Structures and Materials, 4(3), 139-149. DOI: 10.17515/resm2017.18st1118
Da Silva, C. C. C., Helbig, D., Cunha, M. L., Dos Santos, E. D., Rocha, L. A. O.; Real, M. V., Isoldi, L. A. (2019). Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 309-1-309-18. DOI: 10.1007/s40430-019-1815-7
De Queiroz, J., Cunha, M.L., Pavlovic, A., Rocha, L. A. O, Dos Santos, E. D., Troina, G.S., Isoldi, L.A. (2019). Geometric Evaluation of Stiffened Steel Plates Subjected to Transverse Loading for Naval and Offshore Applications. Journal of Marine Science and Engineering, 7(1) ,7-18. DOI: 10.3390/jmse7010007
Dos Santos, E. D., Isoldi, L. A., Gomes, M. N., Rocha, L. A. O. (2017). The Constructal Design Applied to Renewable Energy Systems. In Rincón-Mejía. E & De las Heras. A (Ed.), Sustainable Energy Technologies 1ed. 63-87, Boca Raton: CRC Press - Taylor & Francis Group. DOI: 10.1201/9781315269979
Helbig, D., Cunha, M. L., Da Silva, C. C. C., Dos Santos, E. D., Iturrioz, I. Real, M. V., Isoldi, L. A.; Rocha, L. A. O. (2018). Numerical study of the elasto-plastic buckling in perforated thin steel plates using the constructal design method. Research on Engineering Structures and Materials, 4(3), 169-187. DOI: 10.17515/resm2017.37ds1123
Isoldi, L. A., Real, M. V., Vaz, J., Correia, A. L. G., Dos Santos, E. D., Rocha, L. A. O. (2013). Numerical analysis and geometric optimization of perforated thin plates subjected to tension or buckling. Marine Systems & Ocean Technology, 8(2), 99-107.
Isoldi, L. A., Real, M. V., Correia, A. L. G., Vaz, J., Dos Santos, E. D., Rocha, L. A. O. (2013). Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling. In Rocha, L. A. O., Lorente, S., Bejan, A. (Ed.), Constructal Law and the Unifying Principle of Design - Understanding Complex Systems 1ed. (pp.195-127). New York: Springer.
Lorenzini, G., Helbig, D., Da Silva, C. C. C., Real, M. V., Dos Santos, E. D., Isoldi, L. A., Rocha, L. A. O. (2016). Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the Constructal Design method. International Journal of Heat and Technology, 34(1), s9-s20. DOI: 10.18280/ijht.34S102
Lima, J. P. S., Rocha, L. A. O., Dos Santos, E. D., Real, M. V., Isoldi, L. A. (2018). Constructal design and numerical modeling applied to stiffened steel plates submitted to elasto-plastic buckling. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 19, 195-200.
Nogueira, C., Pinto, V., Rocha, L., Santos, E., & Isoldi, L. (2021). Numerical simulation and constructal design applied to plates with different heights of traverse and longitudinal stiffeners. Engineering Solid Mechanics, 9(2), 221-238.
O’Leary, J. R. & Harari, I. (1985). Finite element analysis of stiffened plates. Computers & Structures, 21(5), 973-985.
Pama, R.P & Cusens, A.R. (1969). Edge beam stiffening of multibeam bridges. Journal of the Structural Division, 93, 141-161.
Powell, G.H. & Ogden, D. W. (1969). Analysis of orthotropic steel plate bridge decks. Journal of the Structural Division, 95, 909-921.
Rappaz, M., Bellet M., & Deville, M. (2010). Numerical Modeling in Materials Science and Engineering. Heidelberg: Springer. DOI: 10.1007/978-3-642-11821-0
Sapountzakis, E. J. & Katsikadelis, J. T. (2000). Analysis of Plates Reinforced with Beams. Computational Mechanics, 26(1), 66-74, 2000. DOI: 10.1007/s004660000156
Singh, D. K., Duggal S. K., & Pal, P. (2015). Analysis of Stiffened Plates using FEM – A Parametric Study. International Research Journal of Engineering and Technology, 2(4), 1650-1656.
De Silveira, T., Pinto, V.T., Neufeld, P.D.S., Pavlovic, A., Rocha, L. A. O., Dos Santos, E. D., & Isoldi, L. A. (2021). Applicability Evidence of Constructal Design in Structural Engineering: Case Study of Biaxial Elasto-Plastic Buckling of Square Steel Plates with Elliptical Cutout. Journal of Applied and Computational Mechanics, 7(2), 922-934. DOI: 10.22055/JACM.2021.35385.2647
Szilard R. (2004). Theories and applications of plate analysis: Classical numerical and engineering methods. 1ª ed. Hoboken: Wiley. DOI: 10.1002/97804701728722
Reis A.H. (2006). Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Applied Mechanics Reviews, 59(5),269-281. DOI: 10.1115/1.2204075
Tanaka, M., Matsumoto, T., & Oida, S. A. (2000). Boundary Element Method Applied to the Elastostatic Bending Problem of Beam-stiffened Plates. Engineering Analysis with Boundary Elements, 24(10),751-758.
Thompson, M. K. & Thompson, J. M. (2017). ANSYS Mechanical APDL for Finite Element Analysis. Kidlington: Elsevier.
Troina, G.S., de Queiroz, J.P.T.P., Cunha, M.L., Rocha, L.A.O., dos Santos E.D., & Isoldi, L.A. (2018). Verificação de modelos computacionais para placas com enrijecedores submetidas a carregamento transversal uniforme. CEREUS, 10(2), 285-298.
Troina, G.S., Cunha, M.L., Pinto, V.T., Rocha, L.A.O., Dos Santos, E.D., Fragassa, C. & Isoldi, L.A. (2020). Computational Modeling and Design Constructal Theory Applied to the Geometric Optimization of Thin Steel Plates with Stiffeners Subjected to Uniform Transverse Load. Metals, 10, 1-29. DOI: 10.3390/met10020220
Ugural, A. C. (2010). Stresses in beams, plates, and shells. 3.ed. Boca Raton: CRC Press.
Ventsel, E. & Krauthammer, T. (2001). Thin Plates and Shells: Theory, Analysis and Applications. 1ª ed. New York: Marcel Dekker, DOI: 10.1201/9780203908723
Bedair, O. K. (2006). Analysis and Limit State Design of stiffened plates and shells: A world view. Applied Mechanics Reviews, 62(2), 01-16. DOI: 10.1115/1.3077137
Bejan, A. & Zane, J. P.(2012). Design in Nature: How the Constructal Law governs evolution in biology, physics, technology, and social organizations. New York: Doubleday.
Carrijo, E.C, Paiva, J.B. & Giogo, J.S. (1999). A numerical and experimental study of stiffened plates in bending. Transactions on Modelling and Simulation, 21, 12-18, DOI: 10.2495/CMEM990021
Cunha, M. L., Troina, G. S., Rocha, L. A. O., dos Santos, E. D., Isoldi, L. A. (2018). Computational modeling and Constructal Design method applied to the geometric optimization of stiffened steel plates subjected to uniform transverse load. Research on Engineering Structures and Materials, 4(3), 139-149. DOI: 10.17515/resm2017.18st1118
Da Silva, C. C. C., Helbig, D., Cunha, M. L., Dos Santos, E. D., Rocha, L. A. O.; Real, M. V., Isoldi, L. A. (2019). Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 309-1-309-18. DOI: 10.1007/s40430-019-1815-7
De Queiroz, J., Cunha, M.L., Pavlovic, A., Rocha, L. A. O, Dos Santos, E. D., Troina, G.S., Isoldi, L.A. (2019). Geometric Evaluation of Stiffened Steel Plates Subjected to Transverse Loading for Naval and Offshore Applications. Journal of Marine Science and Engineering, 7(1) ,7-18. DOI: 10.3390/jmse7010007
Dos Santos, E. D., Isoldi, L. A., Gomes, M. N., Rocha, L. A. O. (2017). The Constructal Design Applied to Renewable Energy Systems. In Rincón-Mejía. E & De las Heras. A (Ed.), Sustainable Energy Technologies 1ed. 63-87, Boca Raton: CRC Press - Taylor & Francis Group. DOI: 10.1201/9781315269979
Helbig, D., Cunha, M. L., Da Silva, C. C. C., Dos Santos, E. D., Iturrioz, I. Real, M. V., Isoldi, L. A.; Rocha, L. A. O. (2018). Numerical study of the elasto-plastic buckling in perforated thin steel plates using the constructal design method. Research on Engineering Structures and Materials, 4(3), 169-187. DOI: 10.17515/resm2017.37ds1123
Isoldi, L. A., Real, M. V., Vaz, J., Correia, A. L. G., Dos Santos, E. D., Rocha, L. A. O. (2013). Numerical analysis and geometric optimization of perforated thin plates subjected to tension or buckling. Marine Systems & Ocean Technology, 8(2), 99-107.
Isoldi, L. A., Real, M. V., Correia, A. L. G., Vaz, J., Dos Santos, E. D., Rocha, L. A. O. (2013). Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling. In Rocha, L. A. O., Lorente, S., Bejan, A. (Ed.), Constructal Law and the Unifying Principle of Design - Understanding Complex Systems 1ed. (pp.195-127). New York: Springer.
Lorenzini, G., Helbig, D., Da Silva, C. C. C., Real, M. V., Dos Santos, E. D., Isoldi, L. A., Rocha, L. A. O. (2016). Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the Constructal Design method. International Journal of Heat and Technology, 34(1), s9-s20. DOI: 10.18280/ijht.34S102
Lima, J. P. S., Rocha, L. A. O., Dos Santos, E. D., Real, M. V., Isoldi, L. A. (2018). Constructal design and numerical modeling applied to stiffened steel plates submitted to elasto-plastic buckling. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 19, 195-200.
Nogueira, C., Pinto, V., Rocha, L., Santos, E., & Isoldi, L. (2021). Numerical simulation and constructal design applied to plates with different heights of traverse and longitudinal stiffeners. Engineering Solid Mechanics, 9(2), 221-238.
O’Leary, J. R. & Harari, I. (1985). Finite element analysis of stiffened plates. Computers & Structures, 21(5), 973-985.
Pama, R.P & Cusens, A.R. (1969). Edge beam stiffening of multibeam bridges. Journal of the Structural Division, 93, 141-161.
Powell, G.H. & Ogden, D. W. (1969). Analysis of orthotropic steel plate bridge decks. Journal of the Structural Division, 95, 909-921.
Rappaz, M., Bellet M., & Deville, M. (2010). Numerical Modeling in Materials Science and Engineering. Heidelberg: Springer. DOI: 10.1007/978-3-642-11821-0
Sapountzakis, E. J. & Katsikadelis, J. T. (2000). Analysis of Plates Reinforced with Beams. Computational Mechanics, 26(1), 66-74, 2000. DOI: 10.1007/s004660000156
Singh, D. K., Duggal S. K., & Pal, P. (2015). Analysis of Stiffened Plates using FEM – A Parametric Study. International Research Journal of Engineering and Technology, 2(4), 1650-1656.
De Silveira, T., Pinto, V.T., Neufeld, P.D.S., Pavlovic, A., Rocha, L. A. O., Dos Santos, E. D., & Isoldi, L. A. (2021). Applicability Evidence of Constructal Design in Structural Engineering: Case Study of Biaxial Elasto-Plastic Buckling of Square Steel Plates with Elliptical Cutout. Journal of Applied and Computational Mechanics, 7(2), 922-934. DOI: 10.22055/JACM.2021.35385.2647
Szilard R. (2004). Theories and applications of plate analysis: Classical numerical and engineering methods. 1ª ed. Hoboken: Wiley. DOI: 10.1002/97804701728722
Reis A.H. (2006). Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Applied Mechanics Reviews, 59(5),269-281. DOI: 10.1115/1.2204075
Tanaka, M., Matsumoto, T., & Oida, S. A. (2000). Boundary Element Method Applied to the Elastostatic Bending Problem of Beam-stiffened Plates. Engineering Analysis with Boundary Elements, 24(10),751-758.
Thompson, M. K. & Thompson, J. M. (2017). ANSYS Mechanical APDL for Finite Element Analysis. Kidlington: Elsevier.
Troina, G.S., de Queiroz, J.P.T.P., Cunha, M.L., Rocha, L.A.O., dos Santos E.D., & Isoldi, L.A. (2018). Verificação de modelos computacionais para placas com enrijecedores submetidas a carregamento transversal uniforme. CEREUS, 10(2), 285-298.
Troina, G.S., Cunha, M.L., Pinto, V.T., Rocha, L.A.O., Dos Santos, E.D., Fragassa, C. & Isoldi, L.A. (2020). Computational Modeling and Design Constructal Theory Applied to the Geometric Optimization of Thin Steel Plates with Stiffeners Subjected to Uniform Transverse Load. Metals, 10, 1-29. DOI: 10.3390/met10020220
Ugural, A. C. (2010). Stresses in beams, plates, and shells. 3.ed. Boca Raton: CRC Press.
Ventsel, E. & Krauthammer, T. (2001). Thin Plates and Shells: Theory, Analysis and Applications. 1ª ed. New York: Marcel Dekker, DOI: 10.1201/9780203908723