How to cite this paper
Rajpurohit, S., Dave, H & Rajurkar, K. (2022). Prediction of tensile strength of fused deposition modeling (FDM) printed PLA using classic laminate theory.Engineering Solid Mechanics, 10(1), 13-24.
Refrences
Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8, 248-257.
Akhoundi, B., & Behravesh, A. H. (2019). Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Experimental Mechanics, 59(6), 883-897.
Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. (2017). Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering, 113, 371-380.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2020). Fracture loads prediction of the modified 3D-printed ABS specimens under mixed-mode I/II loading. Engineering Fracture Mechanics, 235, 107181.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the Geometrical Discontinuity effect on Mixed-Mode I/II Fracture Load of FDM 3D-Printed Parts. Theoretical and Applied Fracture Mechanics, 113, 102953.
Bellini, A., & Güçeri, S. (2003). Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 9, 252-264
Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. (2016). Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453-458.
Croccolo, D., De Agostinis, M., & Olmi, G. (2013). Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Computational Materials Science, 79, 506-518.
Dave, H. K., Patadiya, N. H., Prajapati, A. R., & Rajpurohit, S. R. (2021). Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(10), 1811-1827.
Durgun, I., & Ertan, R. (2014). Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyping Journal, 20, 228-235.
Garg, A., & Bhattacharya, A. (2017). An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study. International Journal of Mechanical Sciences, 120, 225-236.
Garg, A., Bhattacharya, A., & Batish, A. (2017). Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(11), 2031-2039.
Huang, B., & Singamneni, S. (2015). Raster angle mechanics in fused deposition modelling. Journal of Composite Materials, 49(3), 363-383.
Jones, R.M., (2014). Mechanics of composite materials. CRC Press.
Kaw, A.K., (2005). Mechanics of composite materials. CRC Press.
Khosravani, M. R., Berto, F., Ayatollahi, M. R., & Reinicke, T. (2020). Fracture behavior of additively manufactured components: A review. Theoretical and Applied Fracture Mechanics, 109, 102763.
Kulkarni, P., & Dutta, D. (1999). Deposition strategies and resulting part stiffnesses in fused deposition modeling, Journal of Manufacturing Science and Engineering, 121, 93-103
Li, L., Sun, Q., Bellehumeur, C., & Gu, P. (2002). Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. Journal of manufacturing processes, 4(2), 129-141.
Rajpurohit, S. R., & Dave, H. K. (2018). Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Advances in Manufacturing, 6(4), 430-441.
Rajpurohit, S. R., & Dave, H. K. (2019). Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology, 101(5), 1525-1536.
Rankouhi, B., Javadpour, S., Delfanian, F., & Letcher, T. (2016). Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. Journal of Failure Analysis and Prevention, 16(3), 467-481.
Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2001). Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototyping Journal, 7, 148-158.
Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2003). Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling. Rapid Prototyping Journal, 9, 219-230.
Shanmugam, V., Das, O., Babu, K., Marimuthu, U., Veerasimman, A., Johnson, D. J., Neisiany, R.E., Hedenqvist, M.S., Ramakrishna, S, & Berto, F. (2021). Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. International Journal of Fatigue, 143, 106007.
Somireddy, M., & Czekanski, A. (2017). Mechanical characterization of additively manufactured parts by FE modeling of mesostructure. Journal of Manufacturing and Materials Processing, 1(2), 18.
Somireddy, M., Singh, C. V., & Czekanski, A. (2019). Analysis of the material behavior of 3D printed laminates via FFF. Experimental Mechanics, 59(6), 871-881.
Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164.
Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31(1), 287-295.
Sugavaneswaran, M., & Arumaikkannu, G. (2018). Additive manufactured multi-material structure with directional specific mechanical properties based upon classical lamination theory. Rapid Prototyping Journal, 24, 1212-1220.
Xia, Y., Xu, K., Zheng, G., Zou, R., Li, B., & Hu, P. (2019). Investigation on the elasto-plastic constitutive equation of parts fabricated by fused deposition modeling. Rapid Prototyping Journal, 25, 592-601.
Zhou, Y. G., Su, B., & Turng, L. S. (2017). Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling. Rapid Prototyping Journal, 23, 869-880.
Zhou, Y. G., Zou, J. R., Wu, H. H., & Xu, B. P. (2020). Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile‐butadiene‐styrene composites. Polymer Composites, 41(1), 60-72.
Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering, 99, 506-513.
Akhoundi, B., & Behravesh, A. H. (2019). Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Experimental Mechanics, 59(6), 883-897.
Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. (2017). Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering, 113, 371-380.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2020). Fracture loads prediction of the modified 3D-printed ABS specimens under mixed-mode I/II loading. Engineering Fracture Mechanics, 235, 107181.
Ameri, B., Taheri-Behrooz, F., & Aliha, M. R. M. (2021). Evaluation of the Geometrical Discontinuity effect on Mixed-Mode I/II Fracture Load of FDM 3D-Printed Parts. Theoretical and Applied Fracture Mechanics, 113, 102953.
Bellini, A., & Güçeri, S. (2003). Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 9, 252-264
Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. (2016). Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453-458.
Croccolo, D., De Agostinis, M., & Olmi, G. (2013). Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Computational Materials Science, 79, 506-518.
Dave, H. K., Patadiya, N. H., Prajapati, A. R., & Rajpurohit, S. R. (2021). Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(10), 1811-1827.
Durgun, I., & Ertan, R. (2014). Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyping Journal, 20, 228-235.
Garg, A., & Bhattacharya, A. (2017). An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study. International Journal of Mechanical Sciences, 120, 225-236.
Garg, A., Bhattacharya, A., & Batish, A. (2017). Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(11), 2031-2039.
Huang, B., & Singamneni, S. (2015). Raster angle mechanics in fused deposition modelling. Journal of Composite Materials, 49(3), 363-383.
Jones, R.M., (2014). Mechanics of composite materials. CRC Press.
Kaw, A.K., (2005). Mechanics of composite materials. CRC Press.
Khosravani, M. R., Berto, F., Ayatollahi, M. R., & Reinicke, T. (2020). Fracture behavior of additively manufactured components: A review. Theoretical and Applied Fracture Mechanics, 109, 102763.
Kulkarni, P., & Dutta, D. (1999). Deposition strategies and resulting part stiffnesses in fused deposition modeling, Journal of Manufacturing Science and Engineering, 121, 93-103
Li, L., Sun, Q., Bellehumeur, C., & Gu, P. (2002). Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. Journal of manufacturing processes, 4(2), 129-141.
Rajpurohit, S. R., & Dave, H. K. (2018). Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Advances in Manufacturing, 6(4), 430-441.
Rajpurohit, S. R., & Dave, H. K. (2019). Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology, 101(5), 1525-1536.
Rankouhi, B., Javadpour, S., Delfanian, F., & Letcher, T. (2016). Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. Journal of Failure Analysis and Prevention, 16(3), 467-481.
Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2001). Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation. Rapid Prototyping Journal, 7, 148-158.
Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2003). Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling. Rapid Prototyping Journal, 9, 219-230.
Shanmugam, V., Das, O., Babu, K., Marimuthu, U., Veerasimman, A., Johnson, D. J., Neisiany, R.E., Hedenqvist, M.S., Ramakrishna, S, & Berto, F. (2021). Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. International Journal of Fatigue, 143, 106007.
Somireddy, M., & Czekanski, A. (2017). Mechanical characterization of additively manufactured parts by FE modeling of mesostructure. Journal of Manufacturing and Materials Processing, 1(2), 18.
Somireddy, M., Singh, C. V., & Czekanski, A. (2019). Analysis of the material behavior of 3D printed laminates via FFF. Experimental Mechanics, 59(6), 871-881.
Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164.
Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 31(1), 287-295.
Sugavaneswaran, M., & Arumaikkannu, G. (2018). Additive manufactured multi-material structure with directional specific mechanical properties based upon classical lamination theory. Rapid Prototyping Journal, 24, 1212-1220.
Xia, Y., Xu, K., Zheng, G., Zou, R., Li, B., & Hu, P. (2019). Investigation on the elasto-plastic constitutive equation of parts fabricated by fused deposition modeling. Rapid Prototyping Journal, 25, 592-601.
Zhou, Y. G., Su, B., & Turng, L. S. (2017). Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling. Rapid Prototyping Journal, 23, 869-880.
Zhou, Y. G., Zou, J. R., Wu, H. H., & Xu, B. P. (2020). Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile‐butadiene‐styrene composites. Polymer Composites, 41(1), 60-72.
Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering, 99, 506-513.