How to cite this paper
Chanmalai, T., Byungik, B., Kevin, K., Saron, S & Hanumanthareddy, T. (2021). Development of a nomogram to predict the contact stress between an I-girder and a support roller.Engineering Solid Mechanics, 9(4), 377-390.
Refrences
Bekheet, N. (2017). Involute Gear Tooth Stresses Analysis Using Finite Element Modeling. Journal for Engineering, Technology, and Sciences, 34(1). 269-284.
Chacón, R. U. (2013). Numerical Validation of the Incremental Launching Method of a Steel Bridge Through a Small Scale Experimental Study. Experimental Techniques, 40, 333-346. https://doi.org/10.1007/s40799-016-0037-5
Chang, B. (2004a). Analysis of Non-linear Contact Stresses for Launched Plate Girder Bridges. Transportation Scholars Conference, Ames, Iowa.
Chang, B. (2004b). Recommendations for the Analysis of Contact Stresses for Launched Plate Grider. Mater's Thesis, Iowa State University, Ames, Iowa.
Donzella, G. & Petrogalli, C. (2010). A failure assesment diagram for components sujected to rolling contact loading. International Journal of Fatigue, 32, 256-268. https://doi.org/10.1016/J.IJFATIGUE.2009.06.016
Gąska, D., Haniszewski, T. & Margielewicz, J. (2017). I-beam girders dimensioning with numerical modelling of local stresses in wheel-supporting flanges. Mechanika, 23(3), 347352. https://doi.org/10.5755/j01.mech.23.3.14083
Granath, P. (1997). Behavior of Slender Plate Girders Subjected to Patch Loading. Journal of Constructional Steel Research, 42(1), 1-19. https://doi.org/10.1016/S0143-974X(97)00021-7
Granath, P. (1998). Distribution of Support Reaction Against a Steel Girder on a Launching Shoe. Journal of Constructional Steel Research, 47(3), 245-270. https://doi.org/10.1016/S0143-974X(98)00006-6
Gupta, B, Abhishek, C., & Gautam, V. (2012). Contact Stress Analysis of Spur Gear. Journal of Engineering Research & Technology, 1(4), 1-7.
Hertz, H. (1896). The Principles of ,Mechanics, Miscellaneous Papers. Macmillan & Co., London, U.K.
Laukkanen, A., Holmberga, K., Ronkainen, H., Stachowiak, G., Podsiadlo, P., Wolskib, M., Gee, M., Gachot, C. & Li, L (2017). Topographical orientation effects on surface stresses influencing on wear in sliding DLC contacts, Part 2: Modelling and simulations. WEAR, 389(15), 18-28. https://doi.org/10.1016/j.wear.2017.03.026
Norden, B. (1973). On the Compression of a Cylinder Contact with a Plane Surface. Institute for Basic Standards National Bureau of Standards. Washington , D.C.
Olver, A. V. (2005). The machanism of rolling contact fatigue: an update. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(5), 313-330. https://doi.org/10.1243/135065005X9808
Rogač, M., Aleksić, S. and Alesksic, D. (2020). Influence of patch load length on resistance of I-girders. Part-I: Experimental research. Journal of Constructional Steel Research, 175. https://doi.org/10.1016/j.jcsr.2020.106369
Rogač, M., Aleksić, S. and Alesksic, D. (2021). Influence of patch load length on resistance of I-girders. Part-II: Numerical research. Journal of Constructional Steel Research. https://doi.org/10.1016/j.jcsr.2020.106388
Shepherd, J. F. & Johnson, C. R. (2008). Hexahedral Mesh Generation Constraints. Engineering with Computers , 24, 195–213. https://doi.org/10.1007/s00366-008-0091-4
Wen, Z., Wu., L., Li, W., Jin, X. & Zhu, M. (2010). Three-dimensional elastic–plastic stress analysis of wheel–rail rolling contact. Wear, 271(1), 426-436. https://doi.org/10.1016/j.wear.2010.10.001
Wipf, T., Phares, B., Abendroth, R., Wood, D., Chang, B. & Sbraham, S. (2004). Monitoring of the Launched Girder Bridge over the Iowa River on US 20. CTRE Project 01-108, Iowa State University, Ames, IA.
Wriggers, P. (1996). Finite Element Methods for Contact Problems with Friction. Tribology International, 29(8), 651-658. https://doi.org/10.1016/0301-679X(96)00011-4
Zhao, X. & Li, Z. (2015). A Three-dimensional Finite Element Solution of Frictional Wheel–rail Rolling Contact in Elasto-plasticity. Journal of Engineering Tribology, 229(1), 86–100. https://doi.org/10.1177/1350650114543717
Chacón, R. U. (2013). Numerical Validation of the Incremental Launching Method of a Steel Bridge Through a Small Scale Experimental Study. Experimental Techniques, 40, 333-346. https://doi.org/10.1007/s40799-016-0037-5
Chang, B. (2004a). Analysis of Non-linear Contact Stresses for Launched Plate Girder Bridges. Transportation Scholars Conference, Ames, Iowa.
Chang, B. (2004b). Recommendations for the Analysis of Contact Stresses for Launched Plate Grider. Mater's Thesis, Iowa State University, Ames, Iowa.
Donzella, G. & Petrogalli, C. (2010). A failure assesment diagram for components sujected to rolling contact loading. International Journal of Fatigue, 32, 256-268. https://doi.org/10.1016/J.IJFATIGUE.2009.06.016
Gąska, D., Haniszewski, T. & Margielewicz, J. (2017). I-beam girders dimensioning with numerical modelling of local stresses in wheel-supporting flanges. Mechanika, 23(3), 347352. https://doi.org/10.5755/j01.mech.23.3.14083
Granath, P. (1997). Behavior of Slender Plate Girders Subjected to Patch Loading. Journal of Constructional Steel Research, 42(1), 1-19. https://doi.org/10.1016/S0143-974X(97)00021-7
Granath, P. (1998). Distribution of Support Reaction Against a Steel Girder on a Launching Shoe. Journal of Constructional Steel Research, 47(3), 245-270. https://doi.org/10.1016/S0143-974X(98)00006-6
Gupta, B, Abhishek, C., & Gautam, V. (2012). Contact Stress Analysis of Spur Gear. Journal of Engineering Research & Technology, 1(4), 1-7.
Hertz, H. (1896). The Principles of ,Mechanics, Miscellaneous Papers. Macmillan & Co., London, U.K.
Laukkanen, A., Holmberga, K., Ronkainen, H., Stachowiak, G., Podsiadlo, P., Wolskib, M., Gee, M., Gachot, C. & Li, L (2017). Topographical orientation effects on surface stresses influencing on wear in sliding DLC contacts, Part 2: Modelling and simulations. WEAR, 389(15), 18-28. https://doi.org/10.1016/j.wear.2017.03.026
Norden, B. (1973). On the Compression of a Cylinder Contact with a Plane Surface. Institute for Basic Standards National Bureau of Standards. Washington , D.C.
Olver, A. V. (2005). The machanism of rolling contact fatigue: an update. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 219(5), 313-330. https://doi.org/10.1243/135065005X9808
Rogač, M., Aleksić, S. and Alesksic, D. (2020). Influence of patch load length on resistance of I-girders. Part-I: Experimental research. Journal of Constructional Steel Research, 175. https://doi.org/10.1016/j.jcsr.2020.106369
Rogač, M., Aleksić, S. and Alesksic, D. (2021). Influence of patch load length on resistance of I-girders. Part-II: Numerical research. Journal of Constructional Steel Research. https://doi.org/10.1016/j.jcsr.2020.106388
Shepherd, J. F. & Johnson, C. R. (2008). Hexahedral Mesh Generation Constraints. Engineering with Computers , 24, 195–213. https://doi.org/10.1007/s00366-008-0091-4
Wen, Z., Wu., L., Li, W., Jin, X. & Zhu, M. (2010). Three-dimensional elastic–plastic stress analysis of wheel–rail rolling contact. Wear, 271(1), 426-436. https://doi.org/10.1016/j.wear.2010.10.001
Wipf, T., Phares, B., Abendroth, R., Wood, D., Chang, B. & Sbraham, S. (2004). Monitoring of the Launched Girder Bridge over the Iowa River on US 20. CTRE Project 01-108, Iowa State University, Ames, IA.
Wriggers, P. (1996). Finite Element Methods for Contact Problems with Friction. Tribology International, 29(8), 651-658. https://doi.org/10.1016/0301-679X(96)00011-4
Zhao, X. & Li, Z. (2015). A Three-dimensional Finite Element Solution of Frictional Wheel–rail Rolling Contact in Elasto-plasticity. Journal of Engineering Tribology, 229(1), 86–100. https://doi.org/10.1177/1350650114543717