How to cite this paper
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S & Adekoya, G. (2021). Comparative study of graphene-polypyrrole and borophene-polypyrrole composites: molecular dynamics modeling approach.Engineering Solid Mechanics, 9(3), 311-322.
Refrences
Abadi, R., Jenabidehkordi, A., & Rabczuk, T. (2020). Investigation into the fracture mechanism and thermal conductivity of borophene nanofilm; a reactive molecular dynamics simulation. Computational Materials Science, 178 109625
Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: a theoretical perspective. Advances in Physics, 59 (4), 261-482
Accelrys, I. (2010). Materials Studio. Accelrys Software Inc.
Adamska, L., Sadasivam, S., Foley Iv, J. J., Darancet, P., & Sharifzadeh, S. (2018). First-principles investigation of borophene as a monolayer transparent conductor. The Journal of Physical Chemistry C, 122 (7), 4037-4045
Au, H. (2012). Molecular dynamics simulation of nanoporous graphene for selective gas separation. Massachusetts Institute of Technology,
bin MohdáYusoff, A. R. (2015). Graphene based energy devices. Nanoscale, 7 (16), 6881-6882
Biswas, M., & Roy, A. (1994). Thermal, stability, morphological, and conductivity characteristics of polypyrrole prepared in aqueous medium. Journal of applied polymer science, 51 (9), 1575-1580
Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., et al. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific reports, 4 4684
Dai, G., & Mishnaevsky Jr, L. (2014). Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Computational Materials Science, 95, 684-692
Dewapriya, M. A. N., & Meguid, S. A. (2019). Comprehensive molecular dynamics studies of the ballistic resistance of multilayer graphene-polymer composite. Computational Materials Science, 170 109171
Evans, D. J. (1977). On the nitrogen pair potential. Molecular Physics, 33 (4), 979-986
Fan, X., Chen, X., & Dai, L. (2015). 3D graphene based materials for energy storage. Current opinion in colloid and interface science, 20 (5-6), 429-438
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S. S., & Adekoya, G. J. (2020a). Investigation of graphene loaded polypyrrole for lithium-ion battery. Materials Today: Proceedings.
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S. S., & Adekoya, G. J. (2020b). Theoretical analysis of borophene for lithium ion electrode. Materials Today: Proceedings.
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S. S., & Joseph, A. G. (2019). Parametric analysis of electrical conductivity of polymer-composites. Polymers, 11 (8), 1250
Ghafelehbashi, R., Yaraki, M. T., Saremi, L. H., Lajevardi, A., Haratian, M., Astinchap, B., et al. (2020). A pH-responsive citric-acid/-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. Materials Science and Engineering: C, 109 110597
Greathouse, J. A., Cygan, R. T., Fredrich, J. T., & Jerauld, G. R. (2016). Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. The Journal of Physical Chemistry C, 120 (3), 1640-1649
Gwon, H., Kim, H.-S., Lee, K. U., Seo, D.-H., Park, Y. C., Lee, Y.-S., et al. (2011). Flexible energy storage devices based on graphene paper. Energy and Environmental Science, 4 %6(4), 1277-1283 %&.
Hanindriyo, A. T., Sridar, S., Kumar, K. C. H., Hongo, K., & Maezono, R. (2020). Ab initio thermodynamic properties of certain compounds in Nd-Fe-B system. Computational Materials Science, 180 109696.
Hilder, T. A., Yang, R., Ganesh, V., Gordon, D., Bliznyuk, A., Rendell, A. P., et al. (2010). Validity of current force fields for simulations on boron nitride nanotubes. Micro and Nano Letters, 5 (2), 150-156
Jager, E. W. H., Smela, E., Inganas, O., & Lundstroem, I. (1999). Applications of polypyrrole microactuators.
Ji, L., Meduri, P., Agubra, V., Xiao, X., & Alcoutlabi, M. (2016). Graphene‐based nanocomposites for energy storage. Advanced Energy Materials, 6 (16), 1502159
Jia, H., Su, X., Hou, G., Ma, F., Bi, S., & Liu, Z. (2013). Molecular dynamics simulation of interactions on graphene/polypyrrole nanocomposites interface. Integrated Ferroelectrics, 145 (1), 130-139 s.
Karataraki, G., Sapalidis, A., Tocci, E., & Gotzias, A. (2019). Molecular Dynamics of Water Embedded Carbon Nanocones: Surface Waves Observation. Computation, 7 6(3), 50.
Kim, J., Lee, J., You, J., Park, M.-S., Al Hossain, M. S., Yamauchi, Y., et al. (2016). Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 3 (6), 517-535
Kınacı, A., Haskins, J. B., Sevik, C., & Çağın, T. (2012). Thermal conductivity of BN-C nanostructures. Physical Review B, 86(11), 115410
Kinloch, I. A., Suhr, J., Lou, J., Young, R. J., & Ajayan, P. M. (2018). Composites with carbon nanotubes and graphene: An outlook. Science, 362 (6414), 547-553
Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of temperature on the aging rate of Li ion battery operating above room temperature. Scientific reports, 5 12967
Li, J., Chen, J., Zhu, M., Song, H., & Zhang, H. (2019). Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation. Applied Sciences, 9 (14), 2832
Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., et al. (2018). Experimental realization of honeycomb borophene. Science Bulletin, 63 (5), 282-286
Li, Y., Wang, S., & Wang, Q. (2017). A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon, 111 538-545
Lopez Cascales, J. J., Fernandez, A. J., & Otero, T. F. (2003). Characterization of the reduced and oxidized polypyrrole/water interface: A molecular dynamics simulation study. The Journal of Physical Chemistry B, 107 (35), 9339-9343
Ma, L., Liu, R., Niu, H., Zhao, M., & Huang, Y. (2016). Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology, 137 87-93.
Macwan, I., Khan, M. D. H., Aphale, A., Singh, S., Liu, J., Hingorani, M., et al. (2017). Interactions between avidin and graphene for development of a biosensing platform. Biosensors and Bioelectronics, 89 326-333
Maleki, H., Selman, J. R., Dinwiddie, R. B., & Wang, H. (2001). High thermal conductivity negative electrode material for lithium-ion batteries. Journal of power sources, 94(1), 26-35
Mavinakuli, P., Wei, S., Wang, Q., Karki, A. B., Dhage, S., Wang, Z., et al. (2010). Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. The Journal of Physical Chemistry C, 114 (9), 3874-3882
Mazo, M., Balabaev, N., Alentiev, A., Strelnikov, I., & Yampolskii, Y. (2019). Structure and properties of high and low free volume polymers studied by molecular dynamics simulation. Computation, 7 (2), 27
McDonald, I. R., & Singer, K. (1967). Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method. Discussions of the Faraday Society, 43 40-49
Oyinbo, S. T., & Jen, T.-C. (2020). Molecular dynamics investigation of temperature effect and surface configurations on multiple impacts plastic deformation in a palladium-copper composite metal membrane (CMM): A cold gas dynamic spray (CGDS) process. Computational Materials Science, 185 109968
Peng, B., Zhang, H., Shao, H., Ning, Z., Xu, Y., Ni, G., et al. (2017). Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 5 %6(6), 399-407 %&.
Petucci, J., LeBlond, C., Karimi, M., & Vidali, G. (2013). Diffusion, adsorption, and desorption of molecular hydrogen on graphene and in graphite. The Journal of chemical physics, 139 (4), 044706.
Picaud, S., Hoang, P. N. M., & Herlem, G. (2005). A molecular dynamics simulation of the electrical conductivity behaviors of highly concentrated liquid ammoniates NaINH 3: Comparison with experimental measurements. In.
Plimpton, S. (1993). Fast parallel algorithms for short-range molecular dynamics. In.
Poizot, P., & Dolhem, F. (2011). Clean energy new deal for a sustainable world: from non-CO 2 generating energy sources to greener electrochemical storage devices. Energy \& Environmental Science, 4(6), 2003-2019.
Rahmani, F., Nouranian, S., Li, X., & Al-Ostaz, A. (2017). Reactive molecular simulation of the damage mitigation efficacy of POSS-, graphene-, and carbon nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment. ACS Applied Materials and Interfaces, 9 (14), 12802-12811
Schneider, T., & Stoll, E. (1978). Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Physical Review B, 17(3), 1302
Shi, J., Yang, J., Zhou, J., Ji, H., Tang, X., & Gao, T. (2020). Effect of graphene on thermal stability and mechanical properties of ethylene-vinyl acetate: a molecular dynamics simulation. Materials Research Express, 7 (3), 035304
Stejskal, J., & Trchová, M. (2018). Conducting polypyrrole nanotubes: a review. Chemical Papers, 72 (7), 1563-1595
Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO--the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18 (1), 015012
Sui, H., Yao, J., & Zhang, L. (2015). Molecular simulation of shale gas adsorption and diffusion in clay nanopores. Computation, 3 (4), 687-700
Sun, Y., & Shi, G. (2013). Graphene/polymer composites for energy applications. Journal of Polymer Science Part B: Polymer Physics, 51 (4), 231-253
Tanzifi, M., Yaraki, M. T., Beiramzadeh, Z., Saremi, L. H., Najafifard, M., Moradi, H., et al. (2020). Carboxymethyl cellulose improved adsorption capacity of polypyrrole/CMC composite nanoparticles for removal of reactive dyes: Experimental optimization and DFT calculation. Chemosphere, 127052.
Tsuboi, H., Setogawa, H., Koyama, M., Endou, A., Kubo, M., Del Carpio, C. A., et al. (2006). Development of electrical conductivity estimation method based on tight-binding quantum chemical molecular dynamics simulation. Japanese journal of applied physics, 45(4S), 3137
Vekeman, J., Faginas-Lago, N., Cuesta, I. G., Sánchez-Marín, J., & De Merás, A. S. (2018). Nitrogen Gas on Graphene: pairwise Interaction Potentials.
Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159 (1), 98
Villar-Rodil, S., Paredes, J. I., Martnez-Alonso, A., & Tascon, J. M. D. (2009). Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry, 19 (22), 3591-3593
Xu, K., Liu, Y., An, Z., Xu, G., Gadgil, A. J., & Ruan, G. (2020). The polymeric conformational effect on capacitive deionization performance of graphene oxide/polypyrrole composite electrode. Desalination, 486 114407
Yuan, J., Zhang, L. W., & Liew, K. M. (2015). Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons. RSC advances, 5 (91), 74399-74407
Yuan, Z., Lu, Z., Yang, Z., Sun, J., & Xie, F. (2016). A criterion for the normal properties of graphene/polymer interface. Computational Materials Science, 120 13-20
Zaminpayma, E. (2014). Molecular dynamics simulation of mechanical properties and interaction energy of polythiophene/polyethylene/poly (p‐phenylenevinylene) and CNTs composites. Polymer composites, 35(11), 2261-2268
Zhang, Y., Zhang, C., Feng, Y., Zhang, T., Chen, Q., Chi, Q., et al. (2019). Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 56 138 - 150
Zhang, Z., Yang, Y., Penev, E. S., & Yakobson, B. I. (2017). Elasticity, flexibility, and ideal strength of borophenes. Advanced Functional Materials, 27(9), 1605059
Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K., & Chakraborty, T. (2010). Properties of graphene: a theoretical perspective. Advances in Physics, 59 (4), 261-482
Accelrys, I. (2010). Materials Studio. Accelrys Software Inc.
Adamska, L., Sadasivam, S., Foley Iv, J. J., Darancet, P., & Sharifzadeh, S. (2018). First-principles investigation of borophene as a monolayer transparent conductor. The Journal of Physical Chemistry C, 122 (7), 4037-4045
Au, H. (2012). Molecular dynamics simulation of nanoporous graphene for selective gas separation. Massachusetts Institute of Technology,
bin MohdáYusoff, A. R. (2015). Graphene based energy devices. Nanoscale, 7 (16), 6881-6882
Biswas, M., & Roy, A. (1994). Thermal, stability, morphological, and conductivity characteristics of polypyrrole prepared in aqueous medium. Journal of applied polymer science, 51 (9), 1575-1580
Bo, Z., Shuai, X., Mao, S., Yang, H., Qian, J., Chen, J., et al. (2014). Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific reports, 4 4684
Dai, G., & Mishnaevsky Jr, L. (2014). Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Computational Materials Science, 95, 684-692
Dewapriya, M. A. N., & Meguid, S. A. (2019). Comprehensive molecular dynamics studies of the ballistic resistance of multilayer graphene-polymer composite. Computational Materials Science, 170 109171
Evans, D. J. (1977). On the nitrogen pair potential. Molecular Physics, 33 (4), 979-986
Fan, X., Chen, X., & Dai, L. (2015). 3D graphene based materials for energy storage. Current opinion in colloid and interface science, 20 (5-6), 429-438
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S. S., & Adekoya, G. J. (2020a). Investigation of graphene loaded polypyrrole for lithium-ion battery. Materials Today: Proceedings.
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S. S., & Adekoya, G. J. (2020b). Theoretical analysis of borophene for lithium ion electrode. Materials Today: Proceedings.
Folorunso, O., Hamam, Y., Sadiku, R., Ray, S. S., & Joseph, A. G. (2019). Parametric analysis of electrical conductivity of polymer-composites. Polymers, 11 (8), 1250
Ghafelehbashi, R., Yaraki, M. T., Saremi, L. H., Lajevardi, A., Haratian, M., Astinchap, B., et al. (2020). A pH-responsive citric-acid/-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. Materials Science and Engineering: C, 109 110597
Greathouse, J. A., Cygan, R. T., Fredrich, J. T., & Jerauld, G. R. (2016). Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. The Journal of Physical Chemistry C, 120 (3), 1640-1649
Gwon, H., Kim, H.-S., Lee, K. U., Seo, D.-H., Park, Y. C., Lee, Y.-S., et al. (2011). Flexible energy storage devices based on graphene paper. Energy and Environmental Science, 4 %6(4), 1277-1283 %&.
Hanindriyo, A. T., Sridar, S., Kumar, K. C. H., Hongo, K., & Maezono, R. (2020). Ab initio thermodynamic properties of certain compounds in Nd-Fe-B system. Computational Materials Science, 180 109696.
Hilder, T. A., Yang, R., Ganesh, V., Gordon, D., Bliznyuk, A., Rendell, A. P., et al. (2010). Validity of current force fields for simulations on boron nitride nanotubes. Micro and Nano Letters, 5 (2), 150-156
Jager, E. W. H., Smela, E., Inganas, O., & Lundstroem, I. (1999). Applications of polypyrrole microactuators.
Ji, L., Meduri, P., Agubra, V., Xiao, X., & Alcoutlabi, M. (2016). Graphene‐based nanocomposites for energy storage. Advanced Energy Materials, 6 (16), 1502159
Jia, H., Su, X., Hou, G., Ma, F., Bi, S., & Liu, Z. (2013). Molecular dynamics simulation of interactions on graphene/polypyrrole nanocomposites interface. Integrated Ferroelectrics, 145 (1), 130-139 s.
Karataraki, G., Sapalidis, A., Tocci, E., & Gotzias, A. (2019). Molecular Dynamics of Water Embedded Carbon Nanocones: Surface Waves Observation. Computation, 7 6(3), 50.
Kim, J., Lee, J., You, J., Park, M.-S., Al Hossain, M. S., Yamauchi, Y., et al. (2016). Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 3 (6), 517-535
Kınacı, A., Haskins, J. B., Sevik, C., & Çağın, T. (2012). Thermal conductivity of BN-C nanostructures. Physical Review B, 86(11), 115410
Kinloch, I. A., Suhr, J., Lou, J., Young, R. J., & Ajayan, P. M. (2018). Composites with carbon nanotubes and graphene: An outlook. Science, 362 (6414), 547-553
Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of temperature on the aging rate of Li ion battery operating above room temperature. Scientific reports, 5 12967
Li, J., Chen, J., Zhu, M., Song, H., & Zhang, H. (2019). Interfacial Characteristics of Boron Nitride Nanosheet/Epoxy Resin Nanocomposites: A Molecular Dynamics Simulation. Applied Sciences, 9 (14), 2832
Li, W., Kong, L., Chen, C., Gou, J., Sheng, S., Zhang, W., et al. (2018). Experimental realization of honeycomb borophene. Science Bulletin, 63 (5), 282-286
Li, Y., Wang, S., & Wang, Q. (2017). A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon, 111 538-545
Lopez Cascales, J. J., Fernandez, A. J., & Otero, T. F. (2003). Characterization of the reduced and oxidized polypyrrole/water interface: A molecular dynamics simulation study. The Journal of Physical Chemistry B, 107 (35), 9339-9343
Ma, L., Liu, R., Niu, H., Zhao, M., & Huang, Y. (2016). Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology, 137 87-93.
Macwan, I., Khan, M. D. H., Aphale, A., Singh, S., Liu, J., Hingorani, M., et al. (2017). Interactions between avidin and graphene for development of a biosensing platform. Biosensors and Bioelectronics, 89 326-333
Maleki, H., Selman, J. R., Dinwiddie, R. B., & Wang, H. (2001). High thermal conductivity negative electrode material for lithium-ion batteries. Journal of power sources, 94(1), 26-35
Mavinakuli, P., Wei, S., Wang, Q., Karki, A. B., Dhage, S., Wang, Z., et al. (2010). Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. The Journal of Physical Chemistry C, 114 (9), 3874-3882
Mazo, M., Balabaev, N., Alentiev, A., Strelnikov, I., & Yampolskii, Y. (2019). Structure and properties of high and low free volume polymers studied by molecular dynamics simulation. Computation, 7 (2), 27
McDonald, I. R., & Singer, K. (1967). Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method. Discussions of the Faraday Society, 43 40-49
Oyinbo, S. T., & Jen, T.-C. (2020). Molecular dynamics investigation of temperature effect and surface configurations on multiple impacts plastic deformation in a palladium-copper composite metal membrane (CMM): A cold gas dynamic spray (CGDS) process. Computational Materials Science, 185 109968
Peng, B., Zhang, H., Shao, H., Ning, Z., Xu, Y., Ni, G., et al. (2017). Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 5 %6(6), 399-407 %&.
Petucci, J., LeBlond, C., Karimi, M., & Vidali, G. (2013). Diffusion, adsorption, and desorption of molecular hydrogen on graphene and in graphite. The Journal of chemical physics, 139 (4), 044706.
Picaud, S., Hoang, P. N. M., & Herlem, G. (2005). A molecular dynamics simulation of the electrical conductivity behaviors of highly concentrated liquid ammoniates NaINH 3: Comparison with experimental measurements. In.
Plimpton, S. (1993). Fast parallel algorithms for short-range molecular dynamics. In.
Poizot, P., & Dolhem, F. (2011). Clean energy new deal for a sustainable world: from non-CO 2 generating energy sources to greener electrochemical storage devices. Energy \& Environmental Science, 4(6), 2003-2019.
Rahmani, F., Nouranian, S., Li, X., & Al-Ostaz, A. (2017). Reactive molecular simulation of the damage mitigation efficacy of POSS-, graphene-, and carbon nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment. ACS Applied Materials and Interfaces, 9 (14), 12802-12811
Schneider, T., & Stoll, E. (1978). Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Physical Review B, 17(3), 1302
Shi, J., Yang, J., Zhou, J., Ji, H., Tang, X., & Gao, T. (2020). Effect of graphene on thermal stability and mechanical properties of ethylene-vinyl acetate: a molecular dynamics simulation. Materials Research Express, 7 (3), 035304
Stejskal, J., & Trchová, M. (2018). Conducting polypyrrole nanotubes: a review. Chemical Papers, 72 (7), 1563-1595
Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO--the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18 (1), 015012
Sui, H., Yao, J., & Zhang, L. (2015). Molecular simulation of shale gas adsorption and diffusion in clay nanopores. Computation, 3 (4), 687-700
Sun, Y., & Shi, G. (2013). Graphene/polymer composites for energy applications. Journal of Polymer Science Part B: Polymer Physics, 51 (4), 231-253
Tanzifi, M., Yaraki, M. T., Beiramzadeh, Z., Saremi, L. H., Najafifard, M., Moradi, H., et al. (2020). Carboxymethyl cellulose improved adsorption capacity of polypyrrole/CMC composite nanoparticles for removal of reactive dyes: Experimental optimization and DFT calculation. Chemosphere, 127052.
Tsuboi, H., Setogawa, H., Koyama, M., Endou, A., Kubo, M., Del Carpio, C. A., et al. (2006). Development of electrical conductivity estimation method based on tight-binding quantum chemical molecular dynamics simulation. Japanese journal of applied physics, 45(4S), 3137
Vekeman, J., Faginas-Lago, N., Cuesta, I. G., Sánchez-Marín, J., & De Merás, A. S. (2018). Nitrogen Gas on Graphene: pairwise Interaction Potentials.
Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159 (1), 98
Villar-Rodil, S., Paredes, J. I., Martnez-Alonso, A., & Tascon, J. M. D. (2009). Preparation of graphene dispersions and graphene-polymer composites in organic media. Journal of Materials Chemistry, 19 (22), 3591-3593
Xu, K., Liu, Y., An, Z., Xu, G., Gadgil, A. J., & Ruan, G. (2020). The polymeric conformational effect on capacitive deionization performance of graphene oxide/polypyrrole composite electrode. Desalination, 486 114407
Yuan, J., Zhang, L. W., & Liew, K. M. (2015). Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons. RSC advances, 5 (91), 74399-74407
Yuan, Z., Lu, Z., Yang, Z., Sun, J., & Xie, F. (2016). A criterion for the normal properties of graphene/polymer interface. Computational Materials Science, 120 13-20
Zaminpayma, E. (2014). Molecular dynamics simulation of mechanical properties and interaction energy of polythiophene/polyethylene/poly (p‐phenylenevinylene) and CNTs composites. Polymer composites, 35(11), 2261-2268
Zhang, Y., Zhang, C., Feng, Y., Zhang, T., Chen, Q., Chi, Q., et al. (2019). Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 56 138 - 150
Zhang, Z., Yang, Y., Penev, E. S., & Yakobson, B. I. (2017). Elasticity, flexibility, and ideal strength of borophenes. Advanced Functional Materials, 27(9), 1605059