How to cite this paper
Oyinbo, S & Jen, T. (2021). A numerical analysis of compressive residual stresses in cold gas dynamic spray (CGDS) deposition method.Engineering Solid Mechanics, 9(2), 239-250.
Refrences
Abaqus Analysis User’s Manual. (2014). ABAQUS 6.14 HTML Documentation, Dassault Systemes.
Assadi, F.H., Gartner, T., & Stoltenhoff, H. K. (2003). Bonding mechanism in cold gas spraying. Acta Materialia Inc, 6454(February 2016), 4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X
Bae, G., Kumar, S., Yoon, S., Kang, K., Na, H., Kim, H. J., & Lee, C. (2009). Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Materialia, 57(19), 5654–5666. https://doi.org/10.1016/j.actamat.2009.07.061
Bae, G., Xiong, Y., Kumar, S., Kang, K., & Lee, C. (2008). General aspects of interface bonding in kinetic sprayed coatings. Acta Materialia, 56(17), 4858–4868. https://doi.org/10.1016/j.actamat.2008.06.003
Gnanasekaran, B., Liu, G.-R., Fu, Y., Wang, G., Niu, W., & Lin, T. (2019). A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process - A study using particles. Surface and Coatings Technology, 377, 124812. https://doi.org/10.1016/j.surfcoat.2019.07.036
Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W. S., & Helfritch, D. (2003). Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Applied Surface Science, 219(3), 211–227. https://doi.org/10.1016/S0169-4332(03)00643-3
Grujicic, M., Zhao, C. ., DeRosset, W. ., & Helfritch, D. (2004a). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & Design, 25(8), 681–688. https://doi.org/10.1016/j.matdes.2004.03.008
Grujicic, M., Zhao, C. L., DeRosset, W. S., & Helfritch, D. (2004b). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials and Design, 25(8), 681–688. https://doi.org/10.1016/j.matdes.2004.03.008
Guetta, S., Berger, M. H., Borit, F., Guipont, V., Jeandin, M., Boustie, M., Ichikawa, Y., Sakaguchi, K., & Ogawa, K. (2009). Influence of particle velocity on adhesion of cold-sprayed splats. In Journal of Thermal Spray Technology (Vol. 18, Issue 3, pp. 331–342). https://doi.org/10.1007/s11666-009-9327-0
Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2018). Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Materialia, 158, 430–439. https://doi.org/10.1016/j.actamat.2018.07.065
Kim, K., Watanabe, M., & Kuroda, S. (2010). Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surface & Coatings Technology, 204(14), 2175–2180. https://doi.org/10.1016/j.surfcoat.2009.12.001
King, P. C., Bae, G., Zahiri, S. H., Jahedi, M., & Lee, C. (2010). An experimental and finite element study of cold spray copper impact onto two aluminum substrates. Journal of Thermal Spray Technology, 19(3), 620–634. https://doi.org/10.1007/s11666-009-9454-7
Li, W. Y., & Gao, W. (2009). Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Applied Surface Science, 255(18), 7878–7892. https://doi.org/10.1016/j.apsusc.2009.04.135
Li, W. Y., Liao, H., Li, C. J., Li, G., Coddet, C., & Wang, X. (2006). On high velocity impact of micro-sized metallic particles in cold spraying. Applied Surface Science, 253(5), 2852–2862. https://doi.org/10.1016/j.apsusc.2006.05.126
Lu, J., Zhang, H., Chen, Y., Zhao, X., Guo, F., & Xiao, P. (2019). Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation. Corrosion Science, 159, 108126. https://doi.org/10.1016/j.corsci.2019.108126
Luzin, V., Spencer, K., & Zhang, M. X. (2011). Residual stress and thermo-mechanical properties of cold spray metal coatings. Acta Materialia, 59(3), 1259–1270. https://doi.org/10.1016/j.actamat.2010.10.058
Manap, A., Ogawa, K., & Okabe, T. (2011a). Numerical Analysis of Interfacial Bonding of Aluminum Powder Particle and Aluminum Substrate by Cold Spray Technique using the SPH Method. Proceedings of the JSME/ASME 2011 ICMP2011, Corvallis,Oregon,USA.
Manap, A., Okabe, T., & Ogawa, K. (2011a). Computer simulation of cold sprayed deposition using smoothed particle hydrodynamics. Procedia Engineering, 10, 1145–1150. https://doi.org/10.1016/j.proeng.2011.04.190
Manap, Abreeza, Ogawa, K., & Okabe, T. (2012). Numerical Analysis of Interfacial Bonding of Al-Si Particle and Mild Steel Substrate by Cold Spray Technique Using the SPH Method*. Journal of Solid Mechanics and Materials Engineering, 6(3). https://doi.org/10.1299/jmmp.6.241
Oyinbo, S. T., & Jen, T.-C. (2019). A comparative review on cold gas dynamic spraying processes and technologies. Manufacturing Review, 11–13. https://doi.org/10.1051/mfreview/2019023
Oyinbo, S. T., & Jen, T. C. (2020). Investigation of the process parameters and restitution coefficient of ductile materials during cold gas dynamic spray (CGDS) using finite element analysis. Additive Manufacturing, 31(November 2019), 100986. https://doi.org/10.1016/j.addma.2019.100986
Raoelison, R. N., Verdy, C., & Liao, H. (2017). Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Materials & Design, 133, 266–287. https://doi.org/10.1016/j.matdes.2017.07.067
Richer, P., Zúñiga, A., Yandouzi, M., & Jodoin, B. (2008). CoNiCrAlY microstructural changes induced during Cold Gas Dynamic Spraying. Surface and Coatings Technology, 203(3–4), 364–371. https://doi.org/10.1016/j.surfcoat.2008.09.014
Seraj, R. A., Abdollah-zadeh, A., Dosta, S., Assadi, H., & Cano, I. G. (2019). Comparison of Stellite coatings on low carbon steel produced by CGS and HVOF spraying. Surface and Coatings Technology, 372, 299–311. https://doi.org/10.1016/j.surfcoat.2019.05.022
Suhonen, T., Varis, T., Dosta, S., Torrell, M., & Guilemany, J. M. (2013). Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta Materialia, 61(17), 6329–6337. https://doi.org/10.1016/j.actamat.2013.06.033
Takana, H., Ogawa, K., Shoji, T., & Nishiyama, H. (2008). Computational simulation of cold spray process assisted by electrostatic force. 185, 116–123. https://doi.org/10.1016/j.powtec.2007.10.005
Xie, J., Nélias, D., Ichikawa, Y., Walter-Le Berre, H., & Ogawa, K. (2015). Simulation of the Cold Spray Particle Deposition Process. Journal of Tribology, 137(4), 041101. https://doi.org/10.1115/1.4030257
Yildirim, B., Muftu, S., & A.Gouldstone. (2011). Modeling of high velocity impact of spherical particles. Wear, 270(9–10), 703–713.
Yin, S., Wang, X.-F., Li, W. Y., & Jie, H.-E. (2011). Effect of substrate hardness on the deformation behavior of subsequently incident particles in cold spraying. Applied Surface Science, 257, 7560–7565. https://doi.org/10.1016/j.apsusc.2011.03.126
Yin, S., Wang, X., Suo, X., Liao, H., Guo, Z., Li, W., & Coddet, C. (2013). Deposition behavior of thermally softened copper particles in cold spraying. Acta Materialia, 61(14), 5105–5118. https://doi.org/10.1016/J.ACTAMAT.2013.04.041
Zhang, Q., Li, C. J., Li, C. X., Yang, G. J., & Lui, S. C. (2008). Study of oxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying. Surface and Coatings Technology, 202(14), 3378–3384. https://doi.org/10.1016/j.surfcoat.2007.12.028
Zhou, C. E., Liu, G. R., & Lou, K. Y. (2007). Three-dimensional penetration simulation using smoothed particle hydrodynamics. International Journal of Computational Methods, 4(4), 671–691. https://doi.org/10.1142/S0219876207000972
Assadi, F.H., Gartner, T., & Stoltenhoff, H. K. (2003). Bonding mechanism in cold gas spraying. Acta Materialia Inc, 6454(February 2016), 4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X
Bae, G., Kumar, S., Yoon, S., Kang, K., Na, H., Kim, H. J., & Lee, C. (2009). Bonding features and associated mechanisms in kinetic sprayed titanium coatings. Acta Materialia, 57(19), 5654–5666. https://doi.org/10.1016/j.actamat.2009.07.061
Bae, G., Xiong, Y., Kumar, S., Kang, K., & Lee, C. (2008). General aspects of interface bonding in kinetic sprayed coatings. Acta Materialia, 56(17), 4858–4868. https://doi.org/10.1016/j.actamat.2008.06.003
Gnanasekaran, B., Liu, G.-R., Fu, Y., Wang, G., Niu, W., & Lin, T. (2019). A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process - A study using particles. Surface and Coatings Technology, 377, 124812. https://doi.org/10.1016/j.surfcoat.2019.07.036
Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W. S., & Helfritch, D. (2003). Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Applied Surface Science, 219(3), 211–227. https://doi.org/10.1016/S0169-4332(03)00643-3
Grujicic, M., Zhao, C. ., DeRosset, W. ., & Helfritch, D. (2004a). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & Design, 25(8), 681–688. https://doi.org/10.1016/j.matdes.2004.03.008
Grujicic, M., Zhao, C. L., DeRosset, W. S., & Helfritch, D. (2004b). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials and Design, 25(8), 681–688. https://doi.org/10.1016/j.matdes.2004.03.008
Guetta, S., Berger, M. H., Borit, F., Guipont, V., Jeandin, M., Boustie, M., Ichikawa, Y., Sakaguchi, K., & Ogawa, K. (2009). Influence of particle velocity on adhesion of cold-sprayed splats. In Journal of Thermal Spray Technology (Vol. 18, Issue 3, pp. 331–342). https://doi.org/10.1007/s11666-009-9327-0
Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2018). Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Materialia, 158, 430–439. https://doi.org/10.1016/j.actamat.2018.07.065
Kim, K., Watanabe, M., & Kuroda, S. (2010). Bonding mechanisms of thermally softened metallic powder particles and substrates impacted at high velocity. Surface & Coatings Technology, 204(14), 2175–2180. https://doi.org/10.1016/j.surfcoat.2009.12.001
King, P. C., Bae, G., Zahiri, S. H., Jahedi, M., & Lee, C. (2010). An experimental and finite element study of cold spray copper impact onto two aluminum substrates. Journal of Thermal Spray Technology, 19(3), 620–634. https://doi.org/10.1007/s11666-009-9454-7
Li, W. Y., & Gao, W. (2009). Some aspects on 3D numerical modeling of high velocity impact of particles in cold spraying by explicit finite element analysis. Applied Surface Science, 255(18), 7878–7892. https://doi.org/10.1016/j.apsusc.2009.04.135
Li, W. Y., Liao, H., Li, C. J., Li, G., Coddet, C., & Wang, X. (2006). On high velocity impact of micro-sized metallic particles in cold spraying. Applied Surface Science, 253(5), 2852–2862. https://doi.org/10.1016/j.apsusc.2006.05.126
Lu, J., Zhang, H., Chen, Y., Zhao, X., Guo, F., & Xiao, P. (2019). Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation. Corrosion Science, 159, 108126. https://doi.org/10.1016/j.corsci.2019.108126
Luzin, V., Spencer, K., & Zhang, M. X. (2011). Residual stress and thermo-mechanical properties of cold spray metal coatings. Acta Materialia, 59(3), 1259–1270. https://doi.org/10.1016/j.actamat.2010.10.058
Manap, A., Ogawa, K., & Okabe, T. (2011a). Numerical Analysis of Interfacial Bonding of Aluminum Powder Particle and Aluminum Substrate by Cold Spray Technique using the SPH Method. Proceedings of the JSME/ASME 2011 ICMP2011, Corvallis,Oregon,USA.
Manap, A., Okabe, T., & Ogawa, K. (2011a). Computer simulation of cold sprayed deposition using smoothed particle hydrodynamics. Procedia Engineering, 10, 1145–1150. https://doi.org/10.1016/j.proeng.2011.04.190
Manap, Abreeza, Ogawa, K., & Okabe, T. (2012). Numerical Analysis of Interfacial Bonding of Al-Si Particle and Mild Steel Substrate by Cold Spray Technique Using the SPH Method*. Journal of Solid Mechanics and Materials Engineering, 6(3). https://doi.org/10.1299/jmmp.6.241
Oyinbo, S. T., & Jen, T.-C. (2019). A comparative review on cold gas dynamic spraying processes and technologies. Manufacturing Review, 11–13. https://doi.org/10.1051/mfreview/2019023
Oyinbo, S. T., & Jen, T. C. (2020). Investigation of the process parameters and restitution coefficient of ductile materials during cold gas dynamic spray (CGDS) using finite element analysis. Additive Manufacturing, 31(November 2019), 100986. https://doi.org/10.1016/j.addma.2019.100986
Raoelison, R. N., Verdy, C., & Liao, H. (2017). Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Materials & Design, 133, 266–287. https://doi.org/10.1016/j.matdes.2017.07.067
Richer, P., Zúñiga, A., Yandouzi, M., & Jodoin, B. (2008). CoNiCrAlY microstructural changes induced during Cold Gas Dynamic Spraying. Surface and Coatings Technology, 203(3–4), 364–371. https://doi.org/10.1016/j.surfcoat.2008.09.014
Seraj, R. A., Abdollah-zadeh, A., Dosta, S., Assadi, H., & Cano, I. G. (2019). Comparison of Stellite coatings on low carbon steel produced by CGS and HVOF spraying. Surface and Coatings Technology, 372, 299–311. https://doi.org/10.1016/j.surfcoat.2019.05.022
Suhonen, T., Varis, T., Dosta, S., Torrell, M., & Guilemany, J. M. (2013). Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta Materialia, 61(17), 6329–6337. https://doi.org/10.1016/j.actamat.2013.06.033
Takana, H., Ogawa, K., Shoji, T., & Nishiyama, H. (2008). Computational simulation of cold spray process assisted by electrostatic force. 185, 116–123. https://doi.org/10.1016/j.powtec.2007.10.005
Xie, J., Nélias, D., Ichikawa, Y., Walter-Le Berre, H., & Ogawa, K. (2015). Simulation of the Cold Spray Particle Deposition Process. Journal of Tribology, 137(4), 041101. https://doi.org/10.1115/1.4030257
Yildirim, B., Muftu, S., & A.Gouldstone. (2011). Modeling of high velocity impact of spherical particles. Wear, 270(9–10), 703–713.
Yin, S., Wang, X.-F., Li, W. Y., & Jie, H.-E. (2011). Effect of substrate hardness on the deformation behavior of subsequently incident particles in cold spraying. Applied Surface Science, 257, 7560–7565. https://doi.org/10.1016/j.apsusc.2011.03.126
Yin, S., Wang, X., Suo, X., Liao, H., Guo, Z., Li, W., & Coddet, C. (2013). Deposition behavior of thermally softened copper particles in cold spraying. Acta Materialia, 61(14), 5105–5118. https://doi.org/10.1016/J.ACTAMAT.2013.04.041
Zhang, Q., Li, C. J., Li, C. X., Yang, G. J., & Lui, S. C. (2008). Study of oxidation behavior of nanostructured NiCrAlY bond coatings deposited by cold spraying. Surface and Coatings Technology, 202(14), 3378–3384. https://doi.org/10.1016/j.surfcoat.2007.12.028
Zhou, C. E., Liu, G. R., & Lou, K. Y. (2007). Three-dimensional penetration simulation using smoothed particle hydrodynamics. International Journal of Computational Methods, 4(4), 671–691. https://doi.org/10.1142/S0219876207000972