How to cite this paper
Nogueira, C., Pinto, V., Rocha, L., Santos, E & Isoldi, L. (2021). Numerical simulation and constructal design applied to plates with different heights of traverse and longitudinal stiffeners.Engineering Solid Mechanics, 9(2), 221-238.
Refrences
Amaral, R.R., Troina, G.S., Nogueira, C.M., Cunha, M.L., Rocha, L.A.O., Santos, E.D., & Isoldi, L.A. (2019). Computational modeling and constructal design method applied to the geometric evaluation of stiffened thin steel plates considering symmetry boundary condition. Research on Engineering Structures and Materials, 5, 393-402. DOI: 10.17515resm2019.112ms0204
ANSYS Academic Research Mechanical, Release 19, Help System, Element Reference, ANSYS, Inc.
Araújo, J.M. (2014). Curso de concreto armado. 4 ed, vol.2. Rio Grande: Dunas. (In Portuguese)
Bedair, O.K. (1997). Analysis of stiffened plates under lateral loading using sequential quadratic programming (SQP). Computers & Structures, 62(1), 63-80. DOI: 10.1016/S0045-7949(96)00281-7
Bedair, O. K. (2009). Analysis and Limit State Design of stiffened plates and shells: A world view. Applied Mechanics Reviews, 62(2), 01-16. DOI: 10.1115/1.3077137
Bejan, A. & Lorente, S. (2008). Design with Constructal Theory, Wiley: Hoboken, NJ, USA. DOI: 10.1002/9780470432709
Bejan, A. & Zane, J.P. (2012) Design in Nature: How the Constructal Law governs evolution in biology, physics, technology, and social organizations. New York: Doubleday.
Burnett, D. (1987). Finite Element Analysis - From Concepts to Applications. Massachusetts: Addison–Wesley.
Carrijo, E.C, Paiva, J.B. & Giogo, J.S. (1999). A numerical and experimental study of stiffened plates in bending. Transactions on Modelling and Simulation, 21, 12-18, DOI: 10.2495/CMEM990021
Cunha, M. L., Troina, G. S., Rocha, L. A. O., dos Santos, E. D. & Isoldi, L. A. (2018). Computational modeling and Constructal Design method applied to the geometric optimization of stiffened steel plates subjected to uniform transverse load. Research on Engineering Structures and Materials, 4(3), 139-149, DOI: 10.17515/resm2017.18st1118
Da Silva, C.C.C., Helbig, D., Cunha, M.L., Dos Santos, E.D., Rocha, L.A.O.; Real, M.V. & Isoldi, L.A. (2019). Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 309-1-309-18. DOI: 10.1007/s40430-019-1815-7
De Queiroz, J., Cunha, M.L., Pavlovic, A., Rocha, L. A. O, Dos Santos, E. D., Troina, G.S. & Isoldi, L.A. (2019). Geometric Evaluation of Stiffened Steel Plates Subjected to Transverse Loading for Naval and Offshore Applications. Journal of Marine Science and Engineering, 7(1), 7-18. DOI: 10.3390/jmse7010007
Dos Santos, E. D., Isoldi, L. A., Gomes, M. N., Rocha, L. A. O. (2017). The Constructal Design Applied to Renewable Energy Systems. In Rincón-Mejía. E & De las Heras. A (Eds.), Sustainable Energy Technologies 1ed. 63-87. Boca Raton: CRC Press - Taylor & Francis Group. DOI: 10.1201/9781315269979
Guo, M., Issam, E.H. & Ren, W. (2002). Semi-discrete finite element analysis of slab-girder bridges. Computers & Structures, 80(23), 1789-1796. DOI: 10.1016/S0045-7949(02)00207-9
Helbig, D., Da Silva, C.C.C., Real, M. V., Dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2016a). Study About Buckling Phenomenon in Perforated Thin Steel Plates Employing Computational Modeling and Constructal Design Method. Latin American Journal of Solids and Structures, 13, 1912-1936. DOI: 10.1590/1679-78252893
Helbig, D., Real, M.V., Dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2016b). Computational modeling and constructal design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. Journal of Engineering Thermophysics, 25, 197-215. DOI: 10.1134/S1810232816020053
Helbig, D., Cunha, M.L., Da Silva, C.C.C., Dos Santos, E.D., Iturrioz, I., Real, M.V., Isoldi, L.A. & Rocha, L.A.O. (2018). Numerical study of the elasto-plastic buckling in perforated thin steel plates using the constructal design method. Research on Engineering Structures and Materials, 4(3), 169-187. DOI: 10.17515/resm2017.37ds1123
Isoldi, L. A., Real, M.V., Vaz, J., Correia, A.L.G., Dos Santos, E. D. & Rocha, L. A. O. (2013a). Numerical analysis and geometric optimization of perforated thin plates subjected to tension or buckling. Marine Systems & Ocean Technology, 8(2), 99-107.
Isoldi, L. A., Real, M. V., Correia, A. L. G., Vaz, J., Dos Santos, E. D. & Rocha, L. A. O. (2013b). Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling. In Rocha, L. A. O., Lorente, S., Bejan, A. (Ed.), Constructal Law and the Unifying Principle of Design - Understanding Complex Systems 1ed. (pp.195-127). New York: Springer.
Kallassy, A & Marcelin, J.L. (1997). Optimization of stiffened plates by genetic search. Structural Optimization, 13(1), 134-141.
Khosravi, H., Mousavi, S.S. & Tadayonfar, G. (2017). Numerical study of seismic behavior of Composite Steel Plate Shear Walls with flat and corrugated plates. Revista de la construcción, 16(2), 249-260.
Kurkaret, A.R & Cheragui, E. (1993). Analysis procedure for stiffened plate systems using an energy approach. Computers & Structures, 14(4), 649-657.
Lima, J.P.S., Rocha, L.A.O., Dos Santos, E.D., Real, M.V. & Isoldi, L.A. (2018). Constructal design and numerical modeling applied to stiffened steel plates submitted to elasto-plastic buckling. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 19, 195-200.
Lima, J.P.S., Cunha, M.L., dos Santos, E. D. Rocha, L.A.O., Real, M.V. & Isoldi, L.A. (2020). Constructal Design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load. Engineering Structures, 203, 109883. DOI: 10.1016/j.engstruct.2019.109883
Lorente, S., Lee, J. & Bejan, A. (2010). The “flow of stresses” concept: the analogy between mechanical strength and heat convection. International Journal of Heat and Mass Transfer, 53, 2963–2968. DOI: 10.1016/j.ijheatmasstransfer.2010.03.038
Lorenzini, G., Helbig, D., Da Silva, C.C.C., Real, M.V., Dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2016). Numerical Evaluation of the Effect of Type and Shape of Perforations on the Buckling of Thin Steel Plates by means of the Constructal Design Method. International Journal of Heat and Technology, 34, S9-S20. DOI: 10.18280/ijht.34S102
O’Leary, J. R. & Harari, I. (1985). Finite element analysis of stiffened plates. Computers & Structures, 21(5), 973-985.
Pinto, V.T., Cunha, M.L., Troina, G.S., Martins, K.L., dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2019). Constructal design applied to geometrical evaluation of rectangular plates with inclined stiffeners subjected to uniform transverse load. Research on Engineering Structures and Materials, 5, 379-392. DOI: 10.17515resm2019.118ms0215
Reis, A.H. (2006). Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Applied Mechanics Reviews, 59(5),269-281. DOI: 10.1115/1.2204075
Rocha, L.A.O., Isoldi, L.A., Real, M.V., Dos Santos, E.D., Correia, A.L.G., Biserni, C. & Lorenzini, G. (2013). Constructal design applied to the elastic buckling of thin plates with holes. Central European Journal of Engineering, 3, 475-483. DOI: 10.2478/s13531-013-0105-x
Szilard R. (2004). Theories and applications of plate analysis: Classical numerical and engineering methods. 1ª ed., Hoboken: Wiley. DOI: 10.1002/97804701728722
Troina, G.S.; de Queiroz, J.P.T.P., Cunha, M.L., Rocha, L.A.O., dos Santos E.D., & Isoldi, L.A. (2018). Verificação de modelos computacionais para placas com enrijecedores submetidas a carregamento transversal uniforme. CEREUS. v. 10, n. 2, p. 285-298. DOI: 10.18605/2175-7275/cereus.v10n2p285-298
Troina, G.S., Cunha, M.L., Pinto, V.T., Rocha, L.A.O., Dos Santos, E.D., Fragassa, C. & Isoldi, L.A. (2020). Computational Modeling and Design Constructal Theory Applied to the Geometric Optimization of Thin Steel Plates with Stiffeners Subjected to Uniform Transverse Load. Metals, 10, p. 1-29. DOI: 10.3390/met10020220
Ventsel, E. & Krauthammer, T. (2001). Thin Plates and Shells: Theory, Analysis and Applications. 1ª ed. New York: Marcel Dekker, Inc. DOI: 10.1201/9780203908723
Zienkiewicz, O.C. (1971). The finite Element Method in Engineering Science, 2º ed. London: McGraw- Hill.
ANSYS Academic Research Mechanical, Release 19, Help System, Element Reference, ANSYS, Inc.
Araújo, J.M. (2014). Curso de concreto armado. 4 ed, vol.2. Rio Grande: Dunas. (In Portuguese)
Bedair, O.K. (1997). Analysis of stiffened plates under lateral loading using sequential quadratic programming (SQP). Computers & Structures, 62(1), 63-80. DOI: 10.1016/S0045-7949(96)00281-7
Bedair, O. K. (2009). Analysis and Limit State Design of stiffened plates and shells: A world view. Applied Mechanics Reviews, 62(2), 01-16. DOI: 10.1115/1.3077137
Bejan, A. & Lorente, S. (2008). Design with Constructal Theory, Wiley: Hoboken, NJ, USA. DOI: 10.1002/9780470432709
Bejan, A. & Zane, J.P. (2012) Design in Nature: How the Constructal Law governs evolution in biology, physics, technology, and social organizations. New York: Doubleday.
Burnett, D. (1987). Finite Element Analysis - From Concepts to Applications. Massachusetts: Addison–Wesley.
Carrijo, E.C, Paiva, J.B. & Giogo, J.S. (1999). A numerical and experimental study of stiffened plates in bending. Transactions on Modelling and Simulation, 21, 12-18, DOI: 10.2495/CMEM990021
Cunha, M. L., Troina, G. S., Rocha, L. A. O., dos Santos, E. D. & Isoldi, L. A. (2018). Computational modeling and Constructal Design method applied to the geometric optimization of stiffened steel plates subjected to uniform transverse load. Research on Engineering Structures and Materials, 4(3), 139-149, DOI: 10.17515/resm2017.18st1118
Da Silva, C.C.C., Helbig, D., Cunha, M.L., Dos Santos, E.D., Rocha, L.A.O.; Real, M.V. & Isoldi, L.A. (2019). Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8), 309-1-309-18. DOI: 10.1007/s40430-019-1815-7
De Queiroz, J., Cunha, M.L., Pavlovic, A., Rocha, L. A. O, Dos Santos, E. D., Troina, G.S. & Isoldi, L.A. (2019). Geometric Evaluation of Stiffened Steel Plates Subjected to Transverse Loading for Naval and Offshore Applications. Journal of Marine Science and Engineering, 7(1), 7-18. DOI: 10.3390/jmse7010007
Dos Santos, E. D., Isoldi, L. A., Gomes, M. N., Rocha, L. A. O. (2017). The Constructal Design Applied to Renewable Energy Systems. In Rincón-Mejía. E & De las Heras. A (Eds.), Sustainable Energy Technologies 1ed. 63-87. Boca Raton: CRC Press - Taylor & Francis Group. DOI: 10.1201/9781315269979
Guo, M., Issam, E.H. & Ren, W. (2002). Semi-discrete finite element analysis of slab-girder bridges. Computers & Structures, 80(23), 1789-1796. DOI: 10.1016/S0045-7949(02)00207-9
Helbig, D., Da Silva, C.C.C., Real, M. V., Dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2016a). Study About Buckling Phenomenon in Perforated Thin Steel Plates Employing Computational Modeling and Constructal Design Method. Latin American Journal of Solids and Structures, 13, 1912-1936. DOI: 10.1590/1679-78252893
Helbig, D., Real, M.V., Dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2016b). Computational modeling and constructal design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. Journal of Engineering Thermophysics, 25, 197-215. DOI: 10.1134/S1810232816020053
Helbig, D., Cunha, M.L., Da Silva, C.C.C., Dos Santos, E.D., Iturrioz, I., Real, M.V., Isoldi, L.A. & Rocha, L.A.O. (2018). Numerical study of the elasto-plastic buckling in perforated thin steel plates using the constructal design method. Research on Engineering Structures and Materials, 4(3), 169-187. DOI: 10.17515/resm2017.37ds1123
Isoldi, L. A., Real, M.V., Vaz, J., Correia, A.L.G., Dos Santos, E. D. & Rocha, L. A. O. (2013a). Numerical analysis and geometric optimization of perforated thin plates subjected to tension or buckling. Marine Systems & Ocean Technology, 8(2), 99-107.
Isoldi, L. A., Real, M. V., Correia, A. L. G., Vaz, J., Dos Santos, E. D. & Rocha, L. A. O. (2013b). Flow of Stresses: Constructal Design of Perforated Plates Subjected to Tension or Buckling. In Rocha, L. A. O., Lorente, S., Bejan, A. (Ed.), Constructal Law and the Unifying Principle of Design - Understanding Complex Systems 1ed. (pp.195-127). New York: Springer.
Kallassy, A & Marcelin, J.L. (1997). Optimization of stiffened plates by genetic search. Structural Optimization, 13(1), 134-141.
Khosravi, H., Mousavi, S.S. & Tadayonfar, G. (2017). Numerical study of seismic behavior of Composite Steel Plate Shear Walls with flat and corrugated plates. Revista de la construcción, 16(2), 249-260.
Kurkaret, A.R & Cheragui, E. (1993). Analysis procedure for stiffened plate systems using an energy approach. Computers & Structures, 14(4), 649-657.
Lima, J.P.S., Rocha, L.A.O., Dos Santos, E.D., Real, M.V. & Isoldi, L.A. (2018). Constructal design and numerical modeling applied to stiffened steel plates submitted to elasto-plastic buckling. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 19, 195-200.
Lima, J.P.S., Cunha, M.L., dos Santos, E. D. Rocha, L.A.O., Real, M.V. & Isoldi, L.A. (2020). Constructal Design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load. Engineering Structures, 203, 109883. DOI: 10.1016/j.engstruct.2019.109883
Lorente, S., Lee, J. & Bejan, A. (2010). The “flow of stresses” concept: the analogy between mechanical strength and heat convection. International Journal of Heat and Mass Transfer, 53, 2963–2968. DOI: 10.1016/j.ijheatmasstransfer.2010.03.038
Lorenzini, G., Helbig, D., Da Silva, C.C.C., Real, M.V., Dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2016). Numerical Evaluation of the Effect of Type and Shape of Perforations on the Buckling of Thin Steel Plates by means of the Constructal Design Method. International Journal of Heat and Technology, 34, S9-S20. DOI: 10.18280/ijht.34S102
O’Leary, J. R. & Harari, I. (1985). Finite element analysis of stiffened plates. Computers & Structures, 21(5), 973-985.
Pinto, V.T., Cunha, M.L., Troina, G.S., Martins, K.L., dos Santos, E.D., Isoldi, L.A. & Rocha, L.A.O. (2019). Constructal design applied to geometrical evaluation of rectangular plates with inclined stiffeners subjected to uniform transverse load. Research on Engineering Structures and Materials, 5, 379-392. DOI: 10.17515resm2019.118ms0215
Reis, A.H. (2006). Constructal theory: from engineering to physics, and how flow systems develop shape and structure. Applied Mechanics Reviews, 59(5),269-281. DOI: 10.1115/1.2204075
Rocha, L.A.O., Isoldi, L.A., Real, M.V., Dos Santos, E.D., Correia, A.L.G., Biserni, C. & Lorenzini, G. (2013). Constructal design applied to the elastic buckling of thin plates with holes. Central European Journal of Engineering, 3, 475-483. DOI: 10.2478/s13531-013-0105-x
Szilard R. (2004). Theories and applications of plate analysis: Classical numerical and engineering methods. 1ª ed., Hoboken: Wiley. DOI: 10.1002/97804701728722
Troina, G.S.; de Queiroz, J.P.T.P., Cunha, M.L., Rocha, L.A.O., dos Santos E.D., & Isoldi, L.A. (2018). Verificação de modelos computacionais para placas com enrijecedores submetidas a carregamento transversal uniforme. CEREUS. v. 10, n. 2, p. 285-298. DOI: 10.18605/2175-7275/cereus.v10n2p285-298
Troina, G.S., Cunha, M.L., Pinto, V.T., Rocha, L.A.O., Dos Santos, E.D., Fragassa, C. & Isoldi, L.A. (2020). Computational Modeling and Design Constructal Theory Applied to the Geometric Optimization of Thin Steel Plates with Stiffeners Subjected to Uniform Transverse Load. Metals, 10, p. 1-29. DOI: 10.3390/met10020220
Ventsel, E. & Krauthammer, T. (2001). Thin Plates and Shells: Theory, Analysis and Applications. 1ª ed. New York: Marcel Dekker, Inc. DOI: 10.1201/9780203908723
Zienkiewicz, O.C. (1971). The finite Element Method in Engineering Science, 2º ed. London: McGraw- Hill.