How to cite this paper
Aborehab, A., Kassem, M., Nemnem, A & Kamel, M. (2021). Mechanical characterization and static validation of a satellite honeycomb sandwich structure.Engineering Solid Mechanics, 9(1), 55-70.
Refrences
Aborehab, A., Kassem, M., Nemnem, A. F., Kamel, M., & Kamel, H. (2020). Configuration design and modeling of an efficient small satellite structure. Engineering Solid Mechanics , 8 (1), 7-20.
Ashab, A., Ruan, D., Lu, G., & Bhuiyan, A. A. (2016). Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads. Materials , 9 (3).
Bianchi, G., Aglietti, G. S., & Richardson, G. (2010). Development of Efficient and Cost-Effective Spacecraft Structures Based on Honeycomb Panel Assemblies. IEEE Aerospace Conference.
Birman, V., & Kardomateas, G. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B , 142, 221-240.
Boudjemai, A., Amri, R., Mankour, A., Salem, H., Bouanane, M., & Boutchicha, D. (2012). Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design. Materials and Design , 35, 266–275.
C365-00. (2000, April). Standard Test Method for Flatwise Compressive Properties of Sandwich Cores. ASTM .
C393-00. (2000). Standard Test Method for Flexural Properties of Sandwich Constructions. ASTM .
Cheng, S., Zhao, B., Xiao, Z., & Xin, Y. (2015). Compression tests on aluminum honeycomband epoxy resin sandwich panels. Emerging Materials Research , 4 (EMR2).
Czechowski, L., Jankowski, J., & Kotełko, M. (2017). Experimental and numerical three-point bending test for sandwich beams. Journal of KONES Powertrain and Transport , 24 (3).
Feraboli, P. (2006). Damage Resistance Characteristics of Thick-Core Honeycomb Composite Panels. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island.
Fu, J., Luo, H., Wang, W., & Wang, Z. (2017). Dynamic Response Analysis of Solar Array of a Satellite. IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC).
Gibson, L., & Ashby, M. (1997). Cellular Solids : Structure and Properties, 2nd edition. Cambridge: Cambridge University Press.
Grediac, M. (1993). A finite element study of the transverse shear in honeycomb cores. International Journal of Solids and Structures , 30 (13), 1777-1788.
Hao, L., Geng, L., Shangjun, M., & Wenbin, L. (2011). Dynamic Analysis of the Spacecraft Structure on Orbit Made up of Honeycomb Sandwich Plates. IEEE International Conference on Computer Science and Automation Engineering . Shanghai.
HEXCEL-Composites. (1999). HexWeb Honeycomb Attributes and Properties. Hexcel Composites.
Hussain, M., Khan, R., & Abbas, N. (2018). Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University–Science .
Jiang, D., Zhang, D., Fei, Q., & Wu, S. (2014). An approach on identification of equivalent properties of honeycomb core using experimental modal data. Finite Elements in Analysis and Design , 90, 84–92.
Kelsey, S., Gellatly, R., & Clark, B. (1958). The shear modulus of foil honeycomb. Aircraft Engineering and Aerospace Technology , 30 (10), 294-302.
Khan, M. K. (2006). Compressive and lamination strength of honeycomb sandwich panels with strain energy calculation from ASTM standards. Journal of aerospace engineering , 220 (5), 375–386.
Kim, B., & Lee, D. L. (2010). Development of a satellite structure with the sandwich T-joint. Composite Structures , 460–468.
Kolopp, A., Rivallant, S., & Bouvet, C. (2013). Experimental study of sandwich structures as armour against medium-velocity impacts. International Journal of Impact Engineering , 61, 24-35.
Li, X., Li, K., Din, Y., Chen, R., & Lu, F. (2016). Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs. Shock and Vibration .
Liu, Y., Gao, W., Liu, W., & Hua, Z. (2017). Numerical Analysis and Mechanical Properties of Nomex Honeycomb Core. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Tampa, Florida, USA.
Lv, L., Huang, Y., Cui, J., Qian, Y., Ye, F., & Zhao, Y. (2018). Bending properties of three-dimensional honeycomb sandwich structure composites. Textile Research Journal , 88 (17), 2024-2031.
Olsen, T. (2010). Electromechanical Materials Testing Machines. USA.
Rodriguez-Ramirez, J., Castanie, B., & Bouvet, C. (2018). Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core. Composite Structures , 193, 121-139.
Roell, Z. ProLine table-top testing machines Z010. Germany.
Sorohan, Ş., Sandua, M., Sandua, A., & Constantinescu, D. M. (2015). Finite element models used to determine the equivalent in-plane properties of honeycombs. DANUBIA ADRIA SYMPOSIUM on Advanced in Experimental Mechanics (DAS 2015). ScienceDirect.
Su, P., Han, B., Zhao, Z., & Zhang, Q. (2018). Three-point bending of honeycomb sandwich beams with facesheet perforations. Acta Mechanica Sinica , 34 (4), 667–675.
Sun, G., Huo, X., Chen, D., & Li, Q. (2017). Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression. Materials & Design , 133, 154-168.
Sun, W.-Q., & Cheng, W. (2017). Finite element model updating of honeycomb sandwich plates using a response surface model and global optimization technique. Structural and Multidisciplinary Optimization , 121–139.
Vinson, J. R. (2005). Sandwich Structures: Past, Present, and Future. Sandwich Structures 7: Advancing with Sandwich Structures and Materials. Springer, Dordrecht.
Xia, L.-j., Jin, X.-d., & Wang, Y.-b. (2001). The Equivalent Analysis of Honeycomb Sandwich Plates for Satellite Structure. J Shanghai Jiao Tong Univ , 37 (7), 999-1001.
Zhang, T., Yan, Y., Li, J., & Luo, H. (2016). Low-velocity impact of honeycomb sandwich composite plates. Journal of Reinforced Plastics and Composites , 35 (1), 8-32.
Ashab, A., Ruan, D., Lu, G., & Bhuiyan, A. A. (2016). Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads. Materials , 9 (3).
Bianchi, G., Aglietti, G. S., & Richardson, G. (2010). Development of Efficient and Cost-Effective Spacecraft Structures Based on Honeycomb Panel Assemblies. IEEE Aerospace Conference.
Birman, V., & Kardomateas, G. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B , 142, 221-240.
Boudjemai, A., Amri, R., Mankour, A., Salem, H., Bouanane, M., & Boutchicha, D. (2012). Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design. Materials and Design , 35, 266–275.
C365-00. (2000, April). Standard Test Method for Flatwise Compressive Properties of Sandwich Cores. ASTM .
C393-00. (2000). Standard Test Method for Flexural Properties of Sandwich Constructions. ASTM .
Cheng, S., Zhao, B., Xiao, Z., & Xin, Y. (2015). Compression tests on aluminum honeycomband epoxy resin sandwich panels. Emerging Materials Research , 4 (EMR2).
Czechowski, L., Jankowski, J., & Kotełko, M. (2017). Experimental and numerical three-point bending test for sandwich beams. Journal of KONES Powertrain and Transport , 24 (3).
Feraboli, P. (2006). Damage Resistance Characteristics of Thick-Core Honeycomb Composite Panels. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island.
Fu, J., Luo, H., Wang, W., & Wang, Z. (2017). Dynamic Response Analysis of Solar Array of a Satellite. IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC).
Gibson, L., & Ashby, M. (1997). Cellular Solids : Structure and Properties, 2nd edition. Cambridge: Cambridge University Press.
Grediac, M. (1993). A finite element study of the transverse shear in honeycomb cores. International Journal of Solids and Structures , 30 (13), 1777-1788.
Hao, L., Geng, L., Shangjun, M., & Wenbin, L. (2011). Dynamic Analysis of the Spacecraft Structure on Orbit Made up of Honeycomb Sandwich Plates. IEEE International Conference on Computer Science and Automation Engineering . Shanghai.
HEXCEL-Composites. (1999). HexWeb Honeycomb Attributes and Properties. Hexcel Composites.
Hussain, M., Khan, R., & Abbas, N. (2018). Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University–Science .
Jiang, D., Zhang, D., Fei, Q., & Wu, S. (2014). An approach on identification of equivalent properties of honeycomb core using experimental modal data. Finite Elements in Analysis and Design , 90, 84–92.
Kelsey, S., Gellatly, R., & Clark, B. (1958). The shear modulus of foil honeycomb. Aircraft Engineering and Aerospace Technology , 30 (10), 294-302.
Khan, M. K. (2006). Compressive and lamination strength of honeycomb sandwich panels with strain energy calculation from ASTM standards. Journal of aerospace engineering , 220 (5), 375–386.
Kim, B., & Lee, D. L. (2010). Development of a satellite structure with the sandwich T-joint. Composite Structures , 460–468.
Kolopp, A., Rivallant, S., & Bouvet, C. (2013). Experimental study of sandwich structures as armour against medium-velocity impacts. International Journal of Impact Engineering , 61, 24-35.
Li, X., Li, K., Din, Y., Chen, R., & Lu, F. (2016). Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs. Shock and Vibration .
Liu, Y., Gao, W., Liu, W., & Hua, Z. (2017). Numerical Analysis and Mechanical Properties of Nomex Honeycomb Core. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Tampa, Florida, USA.
Lv, L., Huang, Y., Cui, J., Qian, Y., Ye, F., & Zhao, Y. (2018). Bending properties of three-dimensional honeycomb sandwich structure composites. Textile Research Journal , 88 (17), 2024-2031.
Olsen, T. (2010). Electromechanical Materials Testing Machines. USA.
Rodriguez-Ramirez, J., Castanie, B., & Bouvet, C. (2018). Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core. Composite Structures , 193, 121-139.
Roell, Z. ProLine table-top testing machines Z010. Germany.
Sorohan, Ş., Sandua, M., Sandua, A., & Constantinescu, D. M. (2015). Finite element models used to determine the equivalent in-plane properties of honeycombs. DANUBIA ADRIA SYMPOSIUM on Advanced in Experimental Mechanics (DAS 2015). ScienceDirect.
Su, P., Han, B., Zhao, Z., & Zhang, Q. (2018). Three-point bending of honeycomb sandwich beams with facesheet perforations. Acta Mechanica Sinica , 34 (4), 667–675.
Sun, G., Huo, X., Chen, D., & Li, Q. (2017). Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression. Materials & Design , 133, 154-168.
Sun, W.-Q., & Cheng, W. (2017). Finite element model updating of honeycomb sandwich plates using a response surface model and global optimization technique. Structural and Multidisciplinary Optimization , 121–139.
Vinson, J. R. (2005). Sandwich Structures: Past, Present, and Future. Sandwich Structures 7: Advancing with Sandwich Structures and Materials. Springer, Dordrecht.
Xia, L.-j., Jin, X.-d., & Wang, Y.-b. (2001). The Equivalent Analysis of Honeycomb Sandwich Plates for Satellite Structure. J Shanghai Jiao Tong Univ , 37 (7), 999-1001.
Zhang, T., Yan, Y., Li, J., & Luo, H. (2016). Low-velocity impact of honeycomb sandwich composite plates. Journal of Reinforced Plastics and Composites , 35 (1), 8-32.