How to cite this paper
Obiko, J & Mwema, F. (2021). Deformation behaviour of high-strength aluminium alloy during forging process using Finite element method.Engineering Solid Mechanics, 9(1), 31-40.
Refrences
Asadi, P., Mahdavinejad, R. A., & Tutunchilar, S. (2011). Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Materials Science & Engineering A, 528(21), 6469–6477.
Christiansen, P., Martins, P. A. F., & Bay, N. (2016). Friction Compensation in the Upsetting of Cylindrical Test Specimens. Experimental Mechanics.
Evans, R. W., & Scharning, P. J. (2001). Axisymmetric compression test and hot working properties of alloys. Materials Science and Technology, 17(8), 995–1004.
Guo, L., Yang, S., Yang, H., & Zhang, J. (2015). Processing map of as-cast 7075 aluminum alloy for hot working. Chinese Journal of Aeronautics, 28(6), 1774–1783.
Jenab, A., & Karimi Taheri, A. (2011). Evaluation of low strain rate constitutive equation of 7075 aluminium alloy at high temperature. Materials Science and Technology, 27(6), 1067–1072.
Kukuryk, M. (2012). Analysis of deformation and damage evolution in hot elongation forging. Archives of Metallurgy and Materials, 57(2), 417–424.
Lee, K. H., Lee, S. R., & Yang, D. Y. (2004). Rigid-plastic finite element analysis of incremental radial forging process using the automatic expansion of domain scheme. Engineering Computations (Swansea,Wales),21(5),470–487.
Li, Y. P., Onodera, E., Matsumoto, H., & Chiba, A. (2009). Correcting the stress-strain curve in hot compression process to high strain level. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(4), 982–990.
Lin, Y. C., Chen, M. S., & Zhong, J. (2008). Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Computational Materials Science, 43(4), 1117–1122.
Maarefdoust, M. (2012). Simulation of finite volume of hot forging process of industrial gear. International Proceedings of Computer Science and Information Technology, 57(Icni), 111–115.
Dieter, G. (1988). Mechanical Metallurgy. Mcgraw Hill New York
Obiko, J. O., Mwema, F. M., & Bodunrin, M. O. (2019). Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software. SN Applied Sciences, 1(9), 1044.
Obiko, Japheth O, Mwema, F. M., & Akinlabi, E. T. (2019). Strain rate-strain/stress relationship during isothermal forging:A Deform-3D FEM. Engineering Solid Mechanics, 8, 1–6.
Oh, S. I. (1982). Finite element analysis of metal forming processes with arbitrarily shaped dies. International Journal of Mechanical Sciences, 24(8), 479–493.
Oh, S. I., Wu, W. T., Tang, J. P., & Vedhanayagam, A. (1991). Capabilities and applications of FEM code deform: the perspective of the developer. Journal of Materials Processing Tech., 27(1–3), 25–42.
Rajamuthamilselvan, M., & Ramanathan, S. (2011). Hot deformation behaviour of 7075 alloy. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2010.09.139
Rasti, J., Najafizadeh, A., & Meratian, M. (2011). Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method. International Journal of ISSI, 8(1), 26–33.
Rokni, M. R., Zarei-Hanzaki, A., Roostaei, A. A., & Abedi, H. R. (2011). An investigation into the hot deformation characteristics of 7075 aluminum alloy. Materials and Design, 32(4), 2339–2344.
Taheri-Mandarjani, M., Zarei-Hanzaki, A., & Abedi, H. R. (2015). Hot ductility behavior of an extruded 7075 aluminum alloy. Materials Science and Engineering A, 637, 107–122.
Zhang, Z. J., Dai, G. Z., Wu, S. N., Dong, L. X., & Liu, L. L. (2009). Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D. Materials Science and Engineering A, 499(1–2), 49–52.
Zhang, Z., Yang, Y., & Meng, M. (2011). Hot deformation behavior of 7075 aluminum alloy bar compressed with different orientation at elevated temperature. Advanced Materials Research, 217–218, 1729–1732.
Zhu, L. (2018). A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Materials Research Express.
Christiansen, P., Martins, P. A. F., & Bay, N. (2016). Friction Compensation in the Upsetting of Cylindrical Test Specimens. Experimental Mechanics.
Evans, R. W., & Scharning, P. J. (2001). Axisymmetric compression test and hot working properties of alloys. Materials Science and Technology, 17(8), 995–1004.
Guo, L., Yang, S., Yang, H., & Zhang, J. (2015). Processing map of as-cast 7075 aluminum alloy for hot working. Chinese Journal of Aeronautics, 28(6), 1774–1783.
Jenab, A., & Karimi Taheri, A. (2011). Evaluation of low strain rate constitutive equation of 7075 aluminium alloy at high temperature. Materials Science and Technology, 27(6), 1067–1072.
Kukuryk, M. (2012). Analysis of deformation and damage evolution in hot elongation forging. Archives of Metallurgy and Materials, 57(2), 417–424.
Lee, K. H., Lee, S. R., & Yang, D. Y. (2004). Rigid-plastic finite element analysis of incremental radial forging process using the automatic expansion of domain scheme. Engineering Computations (Swansea,Wales),21(5),470–487.
Li, Y. P., Onodera, E., Matsumoto, H., & Chiba, A. (2009). Correcting the stress-strain curve in hot compression process to high strain level. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(4), 982–990.
Lin, Y. C., Chen, M. S., & Zhong, J. (2008). Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process. Computational Materials Science, 43(4), 1117–1122.
Maarefdoust, M. (2012). Simulation of finite volume of hot forging process of industrial gear. International Proceedings of Computer Science and Information Technology, 57(Icni), 111–115.
Dieter, G. (1988). Mechanical Metallurgy. Mcgraw Hill New York
Obiko, J. O., Mwema, F. M., & Bodunrin, M. O. (2019). Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software. SN Applied Sciences, 1(9), 1044.
Obiko, Japheth O, Mwema, F. M., & Akinlabi, E. T. (2019). Strain rate-strain/stress relationship during isothermal forging:A Deform-3D FEM. Engineering Solid Mechanics, 8, 1–6.
Oh, S. I. (1982). Finite element analysis of metal forming processes with arbitrarily shaped dies. International Journal of Mechanical Sciences, 24(8), 479–493.
Oh, S. I., Wu, W. T., Tang, J. P., & Vedhanayagam, A. (1991). Capabilities and applications of FEM code deform: the perspective of the developer. Journal of Materials Processing Tech., 27(1–3), 25–42.
Rajamuthamilselvan, M., & Ramanathan, S. (2011). Hot deformation behaviour of 7075 alloy. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2010.09.139
Rasti, J., Najafizadeh, A., & Meratian, M. (2011). Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method. International Journal of ISSI, 8(1), 26–33.
Rokni, M. R., Zarei-Hanzaki, A., Roostaei, A. A., & Abedi, H. R. (2011). An investigation into the hot deformation characteristics of 7075 aluminum alloy. Materials and Design, 32(4), 2339–2344.
Taheri-Mandarjani, M., Zarei-Hanzaki, A., & Abedi, H. R. (2015). Hot ductility behavior of an extruded 7075 aluminum alloy. Materials Science and Engineering A, 637, 107–122.
Zhang, Z. J., Dai, G. Z., Wu, S. N., Dong, L. X., & Liu, L. L. (2009). Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D. Materials Science and Engineering A, 499(1–2), 49–52.
Zhang, Z., Yang, Y., & Meng, M. (2011). Hot deformation behavior of 7075 aluminum alloy bar compressed with different orientation at elevated temperature. Advanced Materials Research, 217–218, 1729–1732.
Zhu, L. (2018). A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature. Materials Research Express.