How to cite this paper
Alshoaibi, A., Ghazwani, M & Hakami, M. (2021). Fatigue life and reliability assessment of metal structures.Engineering Solid Mechanics, 9(1), 13-22.
Refrences
Alegre, J., Preciado, M., & Ferreño, D. (2007). Study of the fatigue failure of an anti-return valve of a high pressure machine. Engineering Failure Analysis, 14(2), 408-416.
Alshoaibi, A. M. (2010). Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading. Structural Engineering and Mechanics, 35(3), 283-299.
Alshoaibi, A. M. (2015). An Adaptive Finite Element Framework for Fatigue Crack Propagation under Constant Amplitude Loading. International Journal of Applied Science and Engineering, 13(3), 261-270.
Alshoaibi, A. M. (2019). Comprehensive Comparisons of Two and Three Dimensional Numerical Estimation of Stress Intensity Factors and Crack propagation in Linear Elastic Analysis. International Journal of Integrated Engineering, 11(6), 45-52.
Alshoaibi, A. M., & Fageehi, Y. A. (2020). 2D finite element simulation of mixed mode fatigue crack propagation for CTS specimen. Journal of Materials Research and Technology, 9(4), 7850-7861.
Antunes, F. V., Branco, R., Ferreira, J. A. M., & Borrego, L. (2019). Stress Intensity Factor Solutions for CTS Mixed Mode Specimen. Frattura ed Integrità Strutturale, 13(48), 676-692.
Chen, H., Wang, Q., Zeng, W., Liu, G., Sun, J., He, L., & Bui, T. Q. (2019). Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning. European Journal of Mechanics-A/Solids, 76, 208-223.
Chen, X., Jin, D., & Kim, K. S. (2006). Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. International Journal of Fatigue, 28(3), 289-299.
Coffin, L. (1963). Cyclic deformation and fatigue of metals. the book, Fatigue and Staying Power of Metals, Izo. IL, USSR, Moscow.
Demir, O., Ayhan, A. O., & İriç, S. (2017). A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development. Engineering Fracture Mechanics, 178, 457-476.
DEMIR, O., Ayhan, A. O., Sedat, I., & LEKESIZ, H. (2018). Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling. Chinese Journal of Aeronautics, 31(7), 1525-1534.
Erdogan, F., & Sih, G. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of basic engineering, 85(4), 519-525.
He, W., Liu, J., & Xie, D. (2014). Numerical study on fatigue crack growth at a web-stiffener of ship structural details by an objected-oriented approach in conjunction with ABAQUS. Marine Structures, 35, 45-69.
Ibrahim, R. (2015). Overview of structural life assessment and reliability, part i: basic ingredients of fracture mechanics. Journal of Ship Production and Design, 31(1), 1-42.
Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws.
Pook, L. (1989). The significance of mode I branch cracks for mixed mode fatigue crack growth threshold behaviour. Paper presented at the ICBMFF2.
Rege, K., & Pavlou, D. G. (2019). Effect of stop holes on structural integrity of offshore structures: a numerical model. Paper presented at the Proceedings of the Institution of Civil Engineers-Maritime Engineering.
Rhee, H. (1989). Fatigue crack growth analyses of offshore structural tubular joint.
Riahi, H., Bressolette, P., Chateauneuf, A., Bouraoui, C., & Fathallah, R. (2011). Reliability analysis and inspection updating by stochastic response surface of fatigue cracks in mixed mode. Engineering structures, 33(12), 3392-3401.
Richard, H., Schramm, B., & Schirmeisen, N.-H. (2014). Cracks on mixed mode loading–theories, experiments, simulations. International Journal of Fatigue, 62, 93-103.
Sajith, S., Murthy, K., & Robi, P. (2020). Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. International Journal of Fatigue, 130, 105285.
Sajith, S., Murthy, K. K., & Robi, P. (2019). Prediction of Accurate mixed mode fatigue crack growth curves using the paris’ law. Journal of The Institution of Engineers (India): Series C, 100(1), 165-174.
Solanki, K. N. (2002). Two and Three-dimensional Finite Element Analysis of Plasticity-induced Fatigue Crack Closure: A Comprehensive Parametric Study. Mississippi State University,
Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2000). Metal fatigue in engineering: John Wiley & Sons.
Tanaka, K. (1974). Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Engineering Fracture Mechanics, 6(3), 493-507.
Wöhler, A. (1860). Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit der Wagen-Achsen. Zeitschrift für Bauwesen, 10(1860), 583-614.
Alshoaibi, A. M. (2010). Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading. Structural Engineering and Mechanics, 35(3), 283-299.
Alshoaibi, A. M. (2015). An Adaptive Finite Element Framework for Fatigue Crack Propagation under Constant Amplitude Loading. International Journal of Applied Science and Engineering, 13(3), 261-270.
Alshoaibi, A. M. (2019). Comprehensive Comparisons of Two and Three Dimensional Numerical Estimation of Stress Intensity Factors and Crack propagation in Linear Elastic Analysis. International Journal of Integrated Engineering, 11(6), 45-52.
Alshoaibi, A. M., & Fageehi, Y. A. (2020). 2D finite element simulation of mixed mode fatigue crack propagation for CTS specimen. Journal of Materials Research and Technology, 9(4), 7850-7861.
Antunes, F. V., Branco, R., Ferreira, J. A. M., & Borrego, L. (2019). Stress Intensity Factor Solutions for CTS Mixed Mode Specimen. Frattura ed Integrità Strutturale, 13(48), 676-692.
Chen, H., Wang, Q., Zeng, W., Liu, G., Sun, J., He, L., & Bui, T. Q. (2019). Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning. European Journal of Mechanics-A/Solids, 76, 208-223.
Chen, X., Jin, D., & Kim, K. S. (2006). Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. International Journal of Fatigue, 28(3), 289-299.
Coffin, L. (1963). Cyclic deformation and fatigue of metals. the book, Fatigue and Staying Power of Metals, Izo. IL, USSR, Moscow.
Demir, O., Ayhan, A. O., & İriç, S. (2017). A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development. Engineering Fracture Mechanics, 178, 457-476.
DEMIR, O., Ayhan, A. O., Sedat, I., & LEKESIZ, H. (2018). Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling. Chinese Journal of Aeronautics, 31(7), 1525-1534.
Erdogan, F., & Sih, G. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of basic engineering, 85(4), 519-525.
He, W., Liu, J., & Xie, D. (2014). Numerical study on fatigue crack growth at a web-stiffener of ship structural details by an objected-oriented approach in conjunction with ABAQUS. Marine Structures, 35, 45-69.
Ibrahim, R. (2015). Overview of structural life assessment and reliability, part i: basic ingredients of fracture mechanics. Journal of Ship Production and Design, 31(1), 1-42.
Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws.
Pook, L. (1989). The significance of mode I branch cracks for mixed mode fatigue crack growth threshold behaviour. Paper presented at the ICBMFF2.
Rege, K., & Pavlou, D. G. (2019). Effect of stop holes on structural integrity of offshore structures: a numerical model. Paper presented at the Proceedings of the Institution of Civil Engineers-Maritime Engineering.
Rhee, H. (1989). Fatigue crack growth analyses of offshore structural tubular joint.
Riahi, H., Bressolette, P., Chateauneuf, A., Bouraoui, C., & Fathallah, R. (2011). Reliability analysis and inspection updating by stochastic response surface of fatigue cracks in mixed mode. Engineering structures, 33(12), 3392-3401.
Richard, H., Schramm, B., & Schirmeisen, N.-H. (2014). Cracks on mixed mode loading–theories, experiments, simulations. International Journal of Fatigue, 62, 93-103.
Sajith, S., Murthy, K., & Robi, P. (2020). Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. International Journal of Fatigue, 130, 105285.
Sajith, S., Murthy, K. K., & Robi, P. (2019). Prediction of Accurate mixed mode fatigue crack growth curves using the paris’ law. Journal of The Institution of Engineers (India): Series C, 100(1), 165-174.
Solanki, K. N. (2002). Two and Three-dimensional Finite Element Analysis of Plasticity-induced Fatigue Crack Closure: A Comprehensive Parametric Study. Mississippi State University,
Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2000). Metal fatigue in engineering: John Wiley & Sons.
Tanaka, K. (1974). Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Engineering Fracture Mechanics, 6(3), 493-507.
Wöhler, A. (1860). Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit der Wagen-Achsen. Zeitschrift für Bauwesen, 10(1860), 583-614.