How to cite this paper
Lamine, D., Djamal, H., Oussama, T., Ayoub, A & khechai, A. (2020). Effect of boundary conditions and geometry on the failure of cylindrical shell structures.Engineering Solid Mechanics, 8(4), 313-322.
Refrences
ABAQUS.(2014). Version 6.14, D. S. S. C.
Argyris, J. H., Papadrakakis, M., & Karapitta, L. (2002). Elasto-plastic analysis of shells with the triangular element TRIC. Computer Methods in Applied Mechanics and Engineering, 191(33), 3613-3636.
Beheshti, A., & Ramezani, S. (2015). Nonlinear finite element analysis of functionally graded structures by enhanced assumed strain shell elements. Applied Mathematical Modelling, 39(13), 3690-3703.
Borković, A., Kovačević, S., Milašinović, D. D., Radenković, G., Mijatović, O., & Golubović-Bugarski, V. (2017). Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method. Thin-Walled Structures, 117, 63-88.
Burzyński, S., Chróścielewski, J., Daszkiewicz, K., & Witkowski, W. (2016). Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Composites Part B: Engineering, 107, 203-213.
Caseiro, J. F., Valente, R. A. F., Reali, A., Kiendl, J., Auricchio, F., & de Sousa, R. A. (2015). Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures. Computer Methods in Applied Mechanics and Engineering, 284, 861-880.
Chen, Q., Shi, Q., Signetti, S., Sun, F., Li, Z., Zhu, F., ... & Pugno, N. M. (2016). Plastic collapse of cylindrical shell-plate periodic honeycombs under uniaxial compression: experimental and numerical analyses. International Journal of Mechanical Sciences, 111, 125-133.
Huang, H. C. (1989). Elastic and elasto-plastic analysis of shell structures using the assumed strain elements. Computers & Structures, 33(2), 327-335.
Jeon, H. M., Lee, Y., Lee, P. S., & Bathe, K. J. (2015). The MITC3+ shell element in geometric nonlinear analysis. Computers & Structures, 146, 91-104.
Temami, O., Hamadi, D. & Bennoui, I. (2017). Numerical and experimental investigation of the behaviour of cylindrical shells. Asian Journal of Civil Engineering 18(8), 1195-1210.
Parisch, H. (1981). Large displacements of shells including material nonlinearities. Computer Methods in Applied Mechanics and Engineering, 27(2), 183-214.
Rajabiehfard, R., Darvizeh, A., Darvizeh, M., Ansari, R., Alitavoli, M., & Sadeghi, H. (2016). Theoretical and experimental analysis of elastic–plastic cylindrical shells under two types of axial impacts. Thin-Walled Structures, 107, 315-326.
Skopinsky, V. N., Berkov, N. A., & Vogov, R. A. (2015). Plastic limit loads for cylindrical shell intersections under combined loading. International Journal of Pressure Vessels and Piping, 126, 8-16.
Wu, J., Long, Y., Zhou, Y., Yu, Y., & Liu, J. (2018). Experimental study on the deformation and damage of cylindrical shell-water-cylindrical shell structures subjected to underwater explosion. Thin-Walled Structures, 127, 654-665.
Argyris, J. H., Papadrakakis, M., & Karapitta, L. (2002). Elasto-plastic analysis of shells with the triangular element TRIC. Computer Methods in Applied Mechanics and Engineering, 191(33), 3613-3636.
Beheshti, A., & Ramezani, S. (2015). Nonlinear finite element analysis of functionally graded structures by enhanced assumed strain shell elements. Applied Mathematical Modelling, 39(13), 3690-3703.
Borković, A., Kovačević, S., Milašinović, D. D., Radenković, G., Mijatović, O., & Golubović-Bugarski, V. (2017). Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method. Thin-Walled Structures, 117, 63-88.
Burzyński, S., Chróścielewski, J., Daszkiewicz, K., & Witkowski, W. (2016). Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Composites Part B: Engineering, 107, 203-213.
Caseiro, J. F., Valente, R. A. F., Reali, A., Kiendl, J., Auricchio, F., & de Sousa, R. A. (2015). Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures. Computer Methods in Applied Mechanics and Engineering, 284, 861-880.
Chen, Q., Shi, Q., Signetti, S., Sun, F., Li, Z., Zhu, F., ... & Pugno, N. M. (2016). Plastic collapse of cylindrical shell-plate periodic honeycombs under uniaxial compression: experimental and numerical analyses. International Journal of Mechanical Sciences, 111, 125-133.
Huang, H. C. (1989). Elastic and elasto-plastic analysis of shell structures using the assumed strain elements. Computers & Structures, 33(2), 327-335.
Jeon, H. M., Lee, Y., Lee, P. S., & Bathe, K. J. (2015). The MITC3+ shell element in geometric nonlinear analysis. Computers & Structures, 146, 91-104.
Temami, O., Hamadi, D. & Bennoui, I. (2017). Numerical and experimental investigation of the behaviour of cylindrical shells. Asian Journal of Civil Engineering 18(8), 1195-1210.
Parisch, H. (1981). Large displacements of shells including material nonlinearities. Computer Methods in Applied Mechanics and Engineering, 27(2), 183-214.
Rajabiehfard, R., Darvizeh, A., Darvizeh, M., Ansari, R., Alitavoli, M., & Sadeghi, H. (2016). Theoretical and experimental analysis of elastic–plastic cylindrical shells under two types of axial impacts. Thin-Walled Structures, 107, 315-326.
Skopinsky, V. N., Berkov, N. A., & Vogov, R. A. (2015). Plastic limit loads for cylindrical shell intersections under combined loading. International Journal of Pressure Vessels and Piping, 126, 8-16.
Wu, J., Long, Y., Zhou, Y., Yu, Y., & Liu, J. (2018). Experimental study on the deformation and damage of cylindrical shell-water-cylindrical shell structures subjected to underwater explosion. Thin-Walled Structures, 127, 654-665.