How to cite this paper
Vazifehdoostsaleh, A., Darjani, M & Bahmani, A. (2020). A three-dimensional fluid-structure interaction (FSI) model for estimating the heart energy consumption of blood flow through the aortic valve.Engineering Solid Mechanics, 8(3), 271-284.
Refrences
Al-Atabi, M., Espino, D. M., & Hukins, D. W. (2010). Computer and experimental modelling of blood flow through the mitral valve of the heart. Journal of Biomechanical Science and Engineering, 5(1), 78-84.
Bellhouse, B. J. (1972). The fluid mechanics of heart valve. Cardiovascular fluid dynamics, 1, 261-285.
Caro, C. G. (1978). The systemic microcirculation. The Mechanics of the Circulation, 350-429.
Carmody, C. J., Burriesci, G., Howard, I. C., & Patterson, E. A. (2006). An approach to the simulation of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 39(1), 158-169.
Christie, J., Sheldahl, L. M., Tristani, F. E., Sagar, K. B., Ptacin, M. J., & Wann, S. (1987). Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation, 76(3), 539-547.
Clark, R. E., & Finke, E. H. (1974). Scanning and light microscopy of human aortic leaflets in stressed and relaxed states. The Journal of Thoracic and Cardiovascular Surgery, 67(5), 792.
Criner, G. J., Barnette, R. E., & D'Alonzo, G. E. (Eds.). (2010). Critical Care Study Guide: Text and Review. Springer Science & Business Media.
De Hart, J., Peters, G. W., Schreurs, P. J., & Baaijens, F. P. (2000). A two-dimensional fluid–structure interaction model of the aortic value. Journal of Biomechanics, 33(9), 1079-1088.
De Hart, J., Peters, G. W. M., Schreurs, P. J. G., & Baaijens, F. P. T. (2003a). A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 36(1), 103-112.
De Hart, J., Baaijens, F. P. T., Peters, G. W. M., & Schreurs, P. J. G. (2003b). A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. Journal of Biomechanics, 36(5), 699-712.
Donea, J., Giuliani, S., & Halleux, J. P. (1982). An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1-3), 689-723.
Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33(1), 445-490.
Engoren, M., & Barbee, D. (2005). Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. American Journal of Critical Care, 14(1), 40-45.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2014). Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve. Computer Methods in Biomechanics and Biomedical Engineering, 17(4), 450-458.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2015). Transient large strain contact modelling: A comparison of contact techniques for simultaneous fluid–structure interaction. European Journal of Mechanics-B/Fluids, 51, 54-60.
Govindarajan, V., Udaykumar, H. S., Herbertson, L. H., Deutsch, S., Manning, K. B., & Chandran, K. B. (2010). Two-dimensional FSI simulation of closing dynamics of a tilting disk mechanical heart valve. Journal of Medical Devices, 4(1), 011001.
Hofer, C. K., Ganter, M. T., & Zollinger, A. (2007). What technique should I use to measure cardiac output?. Current Opinion in Critical Care, 13(3), 308-317.
Knobloch, K., Hoeltke, V., Jakob, E., Vogt, P. M., & Phillips, R. (2008). Non-invasive ultrasonic cardiac output monitoring in exercise testing. International Journal of Cardiology, 126(3), 445-447.
Knobloch, K., Spies, M., Vogt, P. M., & Phillips, R. (2009). A comparison of real-time CW Doppler and calculated cardiac output according to the Stringer formula for non-invasive hemodynamics in exercise testing. International Journal of Cardiology, 131(3), 413-415.
Koch, T. M., Reddy, B. D., Zilla, P., & Franz, T. (2010). Aortic valve leaflet mechanical properties facilitate diastolic valve function. Computer Methods in Biomechanics and Biomedical Engineering, 13(2), 225-234.
Laske, A., Jenni, R., Maloigne, M., Vassalli, G., Bertel, O., & Turina, M. I. (1996). Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. The Annals of Thoracic Surgery, 61(1), 48-57.
Lavdaniti, M. (2008). Invasive and non-invasive methods for cardiac output measurement. International Journal of Caring Sciences, 1(3), 112.
Maroni, J. M., Oelberg, D. A., Pappagianopoulos, P., Boucher, C. A., & Systrom, D. M. (1998). Maximum cardiac output during incremental exercise by first-pass radionuclide ventriculography. Chest, 114(2), 457-461.
Murphy, S. L., Xu, J., & Kochanek, K. D. (2012). Deaths: preliminary data for 2010. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 60(4), 1-52.
Nobile, F., & Formaggia, L. (1999). A stability analysis for the arbitrary lagrangian: Eulerian formulation with finite elements. East-West Journal of Numerical Mathematics, 7(EPFL-ARTICLE-176278), 105-132.
Park, S. H., Lee, S. J., Kim, J. Y., Kim, M. J., Lee, J. Y., Cho, A. R., ... & Jin, D. K. (2011). Direct comparison between brachial pressure obtained by oscillometric method and central pressure using invasive method. Soonchunhyang Medical Science, 17(2), 65-71.
Stringer, W. W., Hansen, J. E., & Wasserman, K. (1997). Cardiac output estimated noninvasively from oxygen uptake during exercise. Journal of Applied Physiology, 82(3), 908-912.
Stijnen, J. M. A., De Hart, J., Bovendeerd, P. H. M., & Van de Vosse, F. N. (2004). Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. Journal of Fluids and Structures, 19(6), 835-850.
Sugawara, J., Tanabe, T., Miyachi, M., Yamamoto, K., Takahashi, K., Iemitsu, M., ... & Matsuda, M. (2003). Non‐invasive assessment of cardiac output during exercise in healthy young humans: comparison between Modelflow method and Doppler echocardiography method. Acta physiologica Scandinavica, 179(4), 361-366.
Van de Vosse, F. N., De Hart, J., Van Oijen, C. H. G. A., Bessems, D., Gunther, T. W. M., Segal, A., ... & Baaijens, F. P. T. (2003). Finite-element-based computational methods for cardiovascular fluid-structure interaction. Journal of Engineering Mathematics, 47(3-4), 335-368.
Wall, W. A., Gerstenberger, A., Gamnitzer, P., Förster, C., & Ramm, E. (2006). Large deformation fluid-structure interaction–advances in ALE methods and new fixed grid approaches. In Fluid-structure interaction (pp. 195-232). Springer, Berlin, Heidelberg.
Xia, G. H., Zhao, Y., & Yeo, J. H. (2005). Numerical simulation of 3D fluid-structure interaction using an immersed membrane method. Modern Physics Letters B, 19(28n29), 1447-1450.
Bellhouse, B. J. (1972). The fluid mechanics of heart valve. Cardiovascular fluid dynamics, 1, 261-285.
Caro, C. G. (1978). The systemic microcirculation. The Mechanics of the Circulation, 350-429.
Carmody, C. J., Burriesci, G., Howard, I. C., & Patterson, E. A. (2006). An approach to the simulation of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 39(1), 158-169.
Christie, J., Sheldahl, L. M., Tristani, F. E., Sagar, K. B., Ptacin, M. J., & Wann, S. (1987). Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation, 76(3), 539-547.
Clark, R. E., & Finke, E. H. (1974). Scanning and light microscopy of human aortic leaflets in stressed and relaxed states. The Journal of Thoracic and Cardiovascular Surgery, 67(5), 792.
Criner, G. J., Barnette, R. E., & D'Alonzo, G. E. (Eds.). (2010). Critical Care Study Guide: Text and Review. Springer Science & Business Media.
De Hart, J., Peters, G. W., Schreurs, P. J., & Baaijens, F. P. (2000). A two-dimensional fluid–structure interaction model of the aortic value. Journal of Biomechanics, 33(9), 1079-1088.
De Hart, J., Peters, G. W. M., Schreurs, P. J. G., & Baaijens, F. P. T. (2003a). A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 36(1), 103-112.
De Hart, J., Baaijens, F. P. T., Peters, G. W. M., & Schreurs, P. J. G. (2003b). A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. Journal of Biomechanics, 36(5), 699-712.
Donea, J., Giuliani, S., & Halleux, J. P. (1982). An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1-3), 689-723.
Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33(1), 445-490.
Engoren, M., & Barbee, D. (2005). Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. American Journal of Critical Care, 14(1), 40-45.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2014). Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve. Computer Methods in Biomechanics and Biomedical Engineering, 17(4), 450-458.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2015). Transient large strain contact modelling: A comparison of contact techniques for simultaneous fluid–structure interaction. European Journal of Mechanics-B/Fluids, 51, 54-60.
Govindarajan, V., Udaykumar, H. S., Herbertson, L. H., Deutsch, S., Manning, K. B., & Chandran, K. B. (2010). Two-dimensional FSI simulation of closing dynamics of a tilting disk mechanical heart valve. Journal of Medical Devices, 4(1), 011001.
Hofer, C. K., Ganter, M. T., & Zollinger, A. (2007). What technique should I use to measure cardiac output?. Current Opinion in Critical Care, 13(3), 308-317.
Knobloch, K., Hoeltke, V., Jakob, E., Vogt, P. M., & Phillips, R. (2008). Non-invasive ultrasonic cardiac output monitoring in exercise testing. International Journal of Cardiology, 126(3), 445-447.
Knobloch, K., Spies, M., Vogt, P. M., & Phillips, R. (2009). A comparison of real-time CW Doppler and calculated cardiac output according to the Stringer formula for non-invasive hemodynamics in exercise testing. International Journal of Cardiology, 131(3), 413-415.
Koch, T. M., Reddy, B. D., Zilla, P., & Franz, T. (2010). Aortic valve leaflet mechanical properties facilitate diastolic valve function. Computer Methods in Biomechanics and Biomedical Engineering, 13(2), 225-234.
Laske, A., Jenni, R., Maloigne, M., Vassalli, G., Bertel, O., & Turina, M. I. (1996). Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. The Annals of Thoracic Surgery, 61(1), 48-57.
Lavdaniti, M. (2008). Invasive and non-invasive methods for cardiac output measurement. International Journal of Caring Sciences, 1(3), 112.
Maroni, J. M., Oelberg, D. A., Pappagianopoulos, P., Boucher, C. A., & Systrom, D. M. (1998). Maximum cardiac output during incremental exercise by first-pass radionuclide ventriculography. Chest, 114(2), 457-461.
Murphy, S. L., Xu, J., & Kochanek, K. D. (2012). Deaths: preliminary data for 2010. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 60(4), 1-52.
Nobile, F., & Formaggia, L. (1999). A stability analysis for the arbitrary lagrangian: Eulerian formulation with finite elements. East-West Journal of Numerical Mathematics, 7(EPFL-ARTICLE-176278), 105-132.
Park, S. H., Lee, S. J., Kim, J. Y., Kim, M. J., Lee, J. Y., Cho, A. R., ... & Jin, D. K. (2011). Direct comparison between brachial pressure obtained by oscillometric method and central pressure using invasive method. Soonchunhyang Medical Science, 17(2), 65-71.
Stringer, W. W., Hansen, J. E., & Wasserman, K. (1997). Cardiac output estimated noninvasively from oxygen uptake during exercise. Journal of Applied Physiology, 82(3), 908-912.
Stijnen, J. M. A., De Hart, J., Bovendeerd, P. H. M., & Van de Vosse, F. N. (2004). Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. Journal of Fluids and Structures, 19(6), 835-850.
Sugawara, J., Tanabe, T., Miyachi, M., Yamamoto, K., Takahashi, K., Iemitsu, M., ... & Matsuda, M. (2003). Non‐invasive assessment of cardiac output during exercise in healthy young humans: comparison between Modelflow method and Doppler echocardiography method. Acta physiologica Scandinavica, 179(4), 361-366.
Van de Vosse, F. N., De Hart, J., Van Oijen, C. H. G. A., Bessems, D., Gunther, T. W. M., Segal, A., ... & Baaijens, F. P. T. (2003). Finite-element-based computational methods for cardiovascular fluid-structure interaction. Journal of Engineering Mathematics, 47(3-4), 335-368.
Wall, W. A., Gerstenberger, A., Gamnitzer, P., Förster, C., & Ramm, E. (2006). Large deformation fluid-structure interaction–advances in ALE methods and new fixed grid approaches. In Fluid-structure interaction (pp. 195-232). Springer, Berlin, Heidelberg.
Xia, G. H., Zhao, Y., & Yeo, J. H. (2005). Numerical simulation of 3D fluid-structure interaction using an immersed membrane method. Modern Physics Letters B, 19(28n29), 1447-1450.