How to cite this paper
Arruda, M & Lopes, B. (2020). Pre-design guidelines for GFRP composite sandwich panels.Engineering Solid Mechanics, 8(2), 169-186.
Refrences
Airex, AG_(3A Composites). (2016). Airex® T92 Easy Processing Structural Foam, Data Sheet 01.2016 (GF-TDS-021). http://www.airexbaltekbanova.com/airex-t92-pet-foam.html (accessed 29-03-2016).
Almeida, J.P.B.M, & Freitas, J.A.T. (1991). Alternative approach to the formulation of hybrid equilibrium finite elements. Computer & Structures, 40(4), 1043-1047.
Arruda, M. R. T., Castro, L. M. S., Ferreira, A. J. M., Garrido, M., Gonilha, J., & Correia, J. R. (2018). Analysis of composite layered beams using Carrera unified formulation with Legendre approximation. Composites Part B: Engineering, 137(Supplement C), 39-50.
Arruda, M. R. T., Castro, L. M. S., Ferreira, A. J. M., Martins, D., & Correia, J. R. (2018). Physically non-linear analysis of beam models using Carrera Unified Formulation. Composite Structures, 195, 60-73. doi: https://doi.org/10.1016/j.compstruct.2018.03.107
Arruda, M. R. T., Garrido, Mário, Castro, L. M. S., Ferreira, A. J. M., & Correia, J. R. (2017). Numerical modelling of the creep behaviour of GFRP sandwich panels using the Carrera Unified Formulation and Composite Creep Modelling. Composite Structures, 183, 103-113.
Arruda, M.R., & Castro, L.M.S.S. (2011). Structural dynamic analysis using hybrid and mixed finite element models. Finite Elements in Analysis and Design, 57, 43-57.
Bakis, C.E., Bank, L.C., Brown, V.L. , Cosenza, E., Davalos, J.F., Lesko, J.J., . . . Triantafillou, T.H. (2002). Fibre Reinforced Polymer Composites for Construction - State-of-the-Art Review. Journal of Composites for Construction, 6(2), 73-87.
Brockenbrough, R.L., & Merritt, F.S. (1999). Structural steel designer's handbook. New York: McGraw-Hill.
Carrera, E. (2003). Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation with Numerical Assessment and Benchmarking. Archives of Computational Methods in Engineering, 10(3), 215-296.
Carrera, E., & Boscolo, M. (2007). Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates. International Journal for Numerical Methods in Engineering, 70, 11-35-1181.
Carrera, E., & Brischetto, S. (2008). Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Composite Structures, 82(4), 549-562.
Carrera, E., Cinefra, M., Petrolo, M., & Zappino, E. (2014). Finite Element Analysis of Structures through Unified Formulation. United Kingdom: Wiley.
Carrera, E., Giunta, G., Nali, P., & Petrolo, M. (2010). Refined beam elements with arbitrary cross-section geometries. Computers & Structures, 88(5–6), 283-293.
Carrera, E., Giunta, G., & Petrolo, M. (2011). Beam Structures: Classical and Advanced Theories. United Kingdom: Wiley.
Carrera, E., Petrolo, M., & Nali, P. (2011). Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams with Arbitrary Section. Shock and Vibration, 18(3). doi: 10.3233/sav-2010-0528
Carrera, Erasmo, & Ciuffreda, Angelo. (2005). Bending of composites and sandwich plates subjected to localized lateral loadings: a comparison of various theories. Composite Structures, 68(2), 185-202.
Carrera, Erasmo, Pagani, Alfonso, & Petrolo, Marco. (2015). Refined 1D Finite Elements for the Analysis of Secondary, Primary, and Complete Civil Engineering Structures. Journal of Structural Engineering, 141(4), 04014123. doi: doi:10.1061/(ASCE)ST.1943-541X.0001076
Carrera, Erasmo, & Petrolo, Marco. (2010). On the Effectiveness of Higher-Order Terms in Refined Beam Theories. Journal of Applied Mechanics, 78(2), 021013-021013. doi: 10.1115/1.4002207
Carrera, Erasmo, & Petrolo, Marco. (2012). Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 47(3), 537-556. doi: 10.1007/s11012-011-9466-5
Carrera, Erasmo, Petrolo, Marco, & Varello, Alberto. (2012). Advanced Beam Formulations for Free-Vibration Analysis of Conventional and Joined Wings. Journal of Aerospace Engineering, 25(2), 282-293.
CEN/TC250. (2017). DRAF - Fibre Reinforced Polymer Structures. In E. C. f. Standardization (Ed.), Working Group 4 Scientific and Technical Report. Brussels.
Clickhouse. (2014). I&D Clickhouse/ADI, project nº 2014/38967 co-financed by the European Union (FEDER) and COMPETE through (POFC).
Clough, R. W. (1960). Finite Element Method in Plane Stress Analysis. Paper presented at the Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh.
CNR-DT-205/2007. (2008). Guide for the Design and Construction of Structures made of FRP Pultruded Elements. Italy: Advisory Committee on Technical Recommendations for Construction
Cook, R.D, Malkus, D.S. , Plesha, M.E., & R.J., Witt. (2002). Concepts and Applications of Finite Element Analysis. USA: John Wiley and Sons Inc.
D7250M-16, ASTM D7250 /. (2016). Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness. In A. International (Ed.), West Conshohocken, . PA.
Davalos, J.F., Qiao, P., Xu, X.F., Robinson, J., & Barth, K.E. (2001). Modeling and characterization of fibre-reinforced plastic honeycomb sandwich panels for highway bridge applications. Composite Structures, 52, 441-452.
EC1. (2002). Eurocode 1: Actions on Structures Part 1-1. Europe: EN1991-1-1.
EC2. (2010). Eurocode Design of concrete structures Part 1-1. Europe: EN1992-1-1.
Felippa, C.A. (2005). The Amusing History of Shear Flexible Beam Elements. Center for Aerospace Structures: College of Engineering University of Colorado Campus Box 429 Boulder Colorado 80309.
Ferreira, A.J.M., Araújo, A.L., Neves, A.M.A, Rodrigues, J.D., Carrera, E., Cinefra, M., . . . Fam, A. (2013). A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates. Composites: Part B, 45, 1258-1264.
Ferreira, A.J.M., Carrera, E., Cinefra, M., & Roque, C.M.C. (2013). Radial basis functions collocation for the bending and free vibration analysis of laminated plates using the Reissner-Mixed Variational Theorem. European Journal of Mechanics A/Solids, 39, 104-112.
FIB. (2010). The fib Model Code 2010 for Concrete Structures, Model Code. International Federation for Structural Concrete. In E. Sohn (Ed.). Switzerland, Lausanne: FIB.
Fridley, Kenneth J., Pollock, Jr David G., & Cobeen, Kelly. (2006). Design Of Wood Structures-Asd/Lrfd. 2nd Edition.
Garrido, M., Madeira, J. F. A., Proença, M., & Correia, J. R. (2019). Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation. Construction and Building Materials, 198, 465-478. doi: https://doi.org/10.1016/j.conbuildmat.2018.11.259
Garrido, M.A. (2016). Composite sandwich panel floors for building rehabilitation. (Ph.D Thesis), Instituto Superior Técnico.
Garrido, M.A., Correia, J.R., Branco, F.A., & Keller, T. (2014). Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modelling. Journal of Composite Materials, 47(19).
Garrido, M.A., Correia, J.R., Branco, F.A., & Sá, M.F. (2012). Creep behavior of GFRP sandwich panels for civil engineering structural applications. Paper presented at the 6th International Conference on FRP Composites in Civil Engineering - CICE 2012, Roma.
Garrido, Mário, & Correia, João R. (2016). Elastic and viscoelastic behaviour of sandwich panels with glass-fibre reinforced polymer faces and polyethylene terephthalate foam core. Journal of Sandwich Structures and Materials. doi: 10.1177/1099636216657388
Garrido, Mário, Correia, João R., & Keller, Thomas. (2016). Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction and Building Materials, 118, 235-244.
Garrido, Mário, Correia, João R., Keller, Thomas, & Cabral-Fonseca, Susana. (2016). Creep of Sandwich Panels with Longitudinal Reinforcement Ribs for Civil Engineering Applications: Experiments and Composite Creep Modeling. Journal of Composites for Construction, 04016074.
Ghali, A., Favre, R., & Elbadry, M. (2018). Concrete Structures: Stresses and Deformations: Analysis and Design for Serviceability, Third Edition (3rd Edition ed.): CRC Press.
Ghali, A., & Nevillle, A.M. (1997). Structural Analysis: A unified Classic and Matrix Approach. London: E & FN Spon.
Giunta, G., Belouettar, S., & Carrera, E. (2010). Analysis of FGM Beams by Means of Classical and Advanced Theories. Mechanics of Advanced Materials and Structures, 17(8), 622-635.
Gonilha, José A., Barros, Joaquim, Correia, João R., Sena-Cruz, José, Branco, Fernando A., Ramos, Luís F., . . . Santos, Tomé. (2014). Static, dynamic and creep behaviour of a full-scale GFRP-SFRSCC hybrid footbridge. Composite Structures, 118, 496-509.
Gonilha, José A., Correia, João R., & Branco, Fernando A. (2014). Structural behaviour of a GFRP-concrete hybrid footbridge prototype: Experimental tests and numerical and analytical simulations. Engineering Structures, 60(0), 11-22. doi: http://dx.doi.org/10.1016/j.engstruct.2013.12.018
Hughes, T.J.R. (2003). The Finite Element Method”, Linear Static and Dynamic Finite Element Analysis: Dover.
Kant, T., Owen, D.R.L., & Zienkiewicz, O.C. (1982). A refined higher-order C0 plate bending element. Computer & Structures, 30, 177–183.
Keller, T. (2008). Function integrated GFRP sandwich roof structure - Structural concept and design. Paper presented at the In Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich Switzerland.
Keller, T., Vallée, T., & Murcia, J. (2008). Function-integrated GFRP sandwich roof structure - Experimental validation of design.
Leong, M., Lars C.T. Overgaard, L.C.T, Thomsen, T.O., Lund, E., & Daniel, I.M. (2012). Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Composite Structures, 94, 768–778.
Mase, G.T., & Mase, G.E. (1999). Continuum Mechanics for Engineers. United States of America: CRC Press LLC.
Mucichescu, Dan T. (1984). Bounds for Stiffness of Prismatic Beams. Journal of Structural Engineering, 110(6), 1410-1414. doi: doi:10.1061/(ASCE)0733-9445(1984)110:6(1410)
Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Roque, C. M. C., Cinefra, M., Jorge, R. M. N., & Soares, C. M. M. (2012). A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites Part B: Engineering, 43(2), 711-725.
Novozhilov, VV. (1961). Theory of elasticity Pergamon.
Pandya, B.N., & Kant, T. (1988). Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations. international Journal of Solids and Structures, 24, 419–451.
Pereira, E.M.B.R. (1993). Elementos Finitos de Tensão, Aplicação à Análise Elástica de Estruturas. (Ph.D Thesis), Instituto Superior Técnico, Lisboa.
Pereira, E.M.B.R., & Freitas, J.A.T. (1996a). A Hybrid-mixed Element Model Based on Legendre Polynomials for Reissner-Mindlin Plates. Computer Methods in Applied Mechanics and Engineering, 136(1-2), 111-126.
Pereira, E.M.B.R., & Freitas, J.A.T. (1996b). A Mixed-Hybrid Finite Element Model based on Orthogonal Functions. International Journal for Numerical Methods in Engineering, 39(8), 1295-1312.
Reddy, J.N. (1984). A simple higher-order theory for laminated composite plates,. Journal of Applied Mechanics, 51(745–752).
Reddy, J.N. (1997). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. London: CRC Press.
Reddy, J.N. (1999). Theory and Analysis of Elastic Plates (Vol. 1). United States of America: Taylor & Francis.
Reddy, J.N. (2004). An Introduction to Nonlinear Finite Element Analysis. Oxford: Oxford University press.
Reis, E.M., & Rizkalla, S.H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Building Materials, 22, 1009-1018.
Sá, Mário F., Gomes, Augusto M., Correia, João R., & Silvestre, Nuno. (2016). Flexural creep response of pultruded GFRP deck panels: Proposal for obtaining full-section viscoelastic moduli and creep coefficients. Composites Part B: Engineering, 98, 213-224. doi: https://doi.org/10.1016/j.compositesb.2016.05.026
Sharaf, T., & A., Fam. (2008). Flexural load tests on sandwich wall panels with different rib configurations. Paper presented at the In Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich.
Silvestre, N., & Camotim, D. (2002a). First-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9), 755-789.
Silvestre, N., & Camotim, D. (2002b). Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9), 791-820.
Spiegel, R.M., & Liu, J. (1999). Schaum's Mathematical Handbook of Formulas and Tables. New York: Schaum McGraw-Hill.
Timoshenko, S.P., & Goodier, J.N. (1970). Theory of Elasticity. Tóquio: McGraw Hill International Book Company.
Timoshenko, S.P., & Young, D.H. (1965). Theory of Structures. New York: McGraw-Hill.
Turner, M.J., Clough, R. W, Martin, H.C., & Topp, L.J. (1956). Stiffness and Deflection Analysis of Complex Structures. Journal of The Aeronautical Sciences, 23(9), 805-823.
Zienkiewicz, O.C., & Taylor, R.L. (2000). The Finite Element Method: For Solids and Structural Mechanics (Vol. 2). Londres: B-H.
Almeida, J.P.B.M, & Freitas, J.A.T. (1991). Alternative approach to the formulation of hybrid equilibrium finite elements. Computer & Structures, 40(4), 1043-1047.
Arruda, M. R. T., Castro, L. M. S., Ferreira, A. J. M., Garrido, M., Gonilha, J., & Correia, J. R. (2018). Analysis of composite layered beams using Carrera unified formulation with Legendre approximation. Composites Part B: Engineering, 137(Supplement C), 39-50.
Arruda, M. R. T., Castro, L. M. S., Ferreira, A. J. M., Martins, D., & Correia, J. R. (2018). Physically non-linear analysis of beam models using Carrera Unified Formulation. Composite Structures, 195, 60-73. doi: https://doi.org/10.1016/j.compstruct.2018.03.107
Arruda, M. R. T., Garrido, Mário, Castro, L. M. S., Ferreira, A. J. M., & Correia, J. R. (2017). Numerical modelling of the creep behaviour of GFRP sandwich panels using the Carrera Unified Formulation and Composite Creep Modelling. Composite Structures, 183, 103-113.
Arruda, M.R., & Castro, L.M.S.S. (2011). Structural dynamic analysis using hybrid and mixed finite element models. Finite Elements in Analysis and Design, 57, 43-57.
Bakis, C.E., Bank, L.C., Brown, V.L. , Cosenza, E., Davalos, J.F., Lesko, J.J., . . . Triantafillou, T.H. (2002). Fibre Reinforced Polymer Composites for Construction - State-of-the-Art Review. Journal of Composites for Construction, 6(2), 73-87.
Brockenbrough, R.L., & Merritt, F.S. (1999). Structural steel designer's handbook. New York: McGraw-Hill.
Carrera, E. (2003). Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation with Numerical Assessment and Benchmarking. Archives of Computational Methods in Engineering, 10(3), 215-296.
Carrera, E., & Boscolo, M. (2007). Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates. International Journal for Numerical Methods in Engineering, 70, 11-35-1181.
Carrera, E., & Brischetto, S. (2008). Analysis of thickness locking in classical, refined and mixed multilayered plate theories. Composite Structures, 82(4), 549-562.
Carrera, E., Cinefra, M., Petrolo, M., & Zappino, E. (2014). Finite Element Analysis of Structures through Unified Formulation. United Kingdom: Wiley.
Carrera, E., Giunta, G., Nali, P., & Petrolo, M. (2010). Refined beam elements with arbitrary cross-section geometries. Computers & Structures, 88(5–6), 283-293.
Carrera, E., Giunta, G., & Petrolo, M. (2011). Beam Structures: Classical and Advanced Theories. United Kingdom: Wiley.
Carrera, E., Petrolo, M., & Nali, P. (2011). Unified Formulation Applied to Free Vibrations Finite Element Analysis of Beams with Arbitrary Section. Shock and Vibration, 18(3). doi: 10.3233/sav-2010-0528
Carrera, Erasmo, & Ciuffreda, Angelo. (2005). Bending of composites and sandwich plates subjected to localized lateral loadings: a comparison of various theories. Composite Structures, 68(2), 185-202.
Carrera, Erasmo, Pagani, Alfonso, & Petrolo, Marco. (2015). Refined 1D Finite Elements for the Analysis of Secondary, Primary, and Complete Civil Engineering Structures. Journal of Structural Engineering, 141(4), 04014123. doi: doi:10.1061/(ASCE)ST.1943-541X.0001076
Carrera, Erasmo, & Petrolo, Marco. (2010). On the Effectiveness of Higher-Order Terms in Refined Beam Theories. Journal of Applied Mechanics, 78(2), 021013-021013. doi: 10.1115/1.4002207
Carrera, Erasmo, & Petrolo, Marco. (2012). Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica, 47(3), 537-556. doi: 10.1007/s11012-011-9466-5
Carrera, Erasmo, Petrolo, Marco, & Varello, Alberto. (2012). Advanced Beam Formulations for Free-Vibration Analysis of Conventional and Joined Wings. Journal of Aerospace Engineering, 25(2), 282-293.
CEN/TC250. (2017). DRAF - Fibre Reinforced Polymer Structures. In E. C. f. Standardization (Ed.), Working Group 4 Scientific and Technical Report. Brussels.
Clickhouse. (2014). I&D Clickhouse/ADI, project nº 2014/38967 co-financed by the European Union (FEDER) and COMPETE through (POFC).
Clough, R. W. (1960). Finite Element Method in Plane Stress Analysis. Paper presented at the Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh.
CNR-DT-205/2007. (2008). Guide for the Design and Construction of Structures made of FRP Pultruded Elements. Italy: Advisory Committee on Technical Recommendations for Construction
Cook, R.D, Malkus, D.S. , Plesha, M.E., & R.J., Witt. (2002). Concepts and Applications of Finite Element Analysis. USA: John Wiley and Sons Inc.
D7250M-16, ASTM D7250 /. (2016). Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness. In A. International (Ed.), West Conshohocken, . PA.
Davalos, J.F., Qiao, P., Xu, X.F., Robinson, J., & Barth, K.E. (2001). Modeling and characterization of fibre-reinforced plastic honeycomb sandwich panels for highway bridge applications. Composite Structures, 52, 441-452.
EC1. (2002). Eurocode 1: Actions on Structures Part 1-1. Europe: EN1991-1-1.
EC2. (2010). Eurocode Design of concrete structures Part 1-1. Europe: EN1992-1-1.
Felippa, C.A. (2005). The Amusing History of Shear Flexible Beam Elements. Center for Aerospace Structures: College of Engineering University of Colorado Campus Box 429 Boulder Colorado 80309.
Ferreira, A.J.M., Araújo, A.L., Neves, A.M.A, Rodrigues, J.D., Carrera, E., Cinefra, M., . . . Fam, A. (2013). A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates. Composites: Part B, 45, 1258-1264.
Ferreira, A.J.M., Carrera, E., Cinefra, M., & Roque, C.M.C. (2013). Radial basis functions collocation for the bending and free vibration analysis of laminated plates using the Reissner-Mixed Variational Theorem. European Journal of Mechanics A/Solids, 39, 104-112.
FIB. (2010). The fib Model Code 2010 for Concrete Structures, Model Code. International Federation for Structural Concrete. In E. Sohn (Ed.). Switzerland, Lausanne: FIB.
Fridley, Kenneth J., Pollock, Jr David G., & Cobeen, Kelly. (2006). Design Of Wood Structures-Asd/Lrfd. 2nd Edition.
Garrido, M., Madeira, J. F. A., Proença, M., & Correia, J. R. (2019). Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation. Construction and Building Materials, 198, 465-478. doi: https://doi.org/10.1016/j.conbuildmat.2018.11.259
Garrido, M.A. (2016). Composite sandwich panel floors for building rehabilitation. (Ph.D Thesis), Instituto Superior Técnico.
Garrido, M.A., Correia, J.R., Branco, F.A., & Keller, T. (2014). Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modelling. Journal of Composite Materials, 47(19).
Garrido, M.A., Correia, J.R., Branco, F.A., & Sá, M.F. (2012). Creep behavior of GFRP sandwich panels for civil engineering structural applications. Paper presented at the 6th International Conference on FRP Composites in Civil Engineering - CICE 2012, Roma.
Garrido, Mário, & Correia, João R. (2016). Elastic and viscoelastic behaviour of sandwich panels with glass-fibre reinforced polymer faces and polyethylene terephthalate foam core. Journal of Sandwich Structures and Materials. doi: 10.1177/1099636216657388
Garrido, Mário, Correia, João R., & Keller, Thomas. (2016). Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction and Building Materials, 118, 235-244.
Garrido, Mário, Correia, João R., Keller, Thomas, & Cabral-Fonseca, Susana. (2016). Creep of Sandwich Panels with Longitudinal Reinforcement Ribs for Civil Engineering Applications: Experiments and Composite Creep Modeling. Journal of Composites for Construction, 04016074.
Ghali, A., Favre, R., & Elbadry, M. (2018). Concrete Structures: Stresses and Deformations: Analysis and Design for Serviceability, Third Edition (3rd Edition ed.): CRC Press.
Ghali, A., & Nevillle, A.M. (1997). Structural Analysis: A unified Classic and Matrix Approach. London: E & FN Spon.
Giunta, G., Belouettar, S., & Carrera, E. (2010). Analysis of FGM Beams by Means of Classical and Advanced Theories. Mechanics of Advanced Materials and Structures, 17(8), 622-635.
Gonilha, José A., Barros, Joaquim, Correia, João R., Sena-Cruz, José, Branco, Fernando A., Ramos, Luís F., . . . Santos, Tomé. (2014). Static, dynamic and creep behaviour of a full-scale GFRP-SFRSCC hybrid footbridge. Composite Structures, 118, 496-509.
Gonilha, José A., Correia, João R., & Branco, Fernando A. (2014). Structural behaviour of a GFRP-concrete hybrid footbridge prototype: Experimental tests and numerical and analytical simulations. Engineering Structures, 60(0), 11-22. doi: http://dx.doi.org/10.1016/j.engstruct.2013.12.018
Hughes, T.J.R. (2003). The Finite Element Method”, Linear Static and Dynamic Finite Element Analysis: Dover.
Kant, T., Owen, D.R.L., & Zienkiewicz, O.C. (1982). A refined higher-order C0 plate bending element. Computer & Structures, 30, 177–183.
Keller, T. (2008). Function integrated GFRP sandwich roof structure - Structural concept and design. Paper presented at the In Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich Switzerland.
Keller, T., Vallée, T., & Murcia, J. (2008). Function-integrated GFRP sandwich roof structure - Experimental validation of design.
Leong, M., Lars C.T. Overgaard, L.C.T, Thomsen, T.O., Lund, E., & Daniel, I.M. (2012). Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine blades. Composite Structures, 94, 768–778.
Mase, G.T., & Mase, G.E. (1999). Continuum Mechanics for Engineers. United States of America: CRC Press LLC.
Mucichescu, Dan T. (1984). Bounds for Stiffness of Prismatic Beams. Journal of Structural Engineering, 110(6), 1410-1414. doi: doi:10.1061/(ASCE)0733-9445(1984)110:6(1410)
Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Roque, C. M. C., Cinefra, M., Jorge, R. M. N., & Soares, C. M. M. (2012). A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Composites Part B: Engineering, 43(2), 711-725.
Novozhilov, VV. (1961). Theory of elasticity Pergamon.
Pandya, B.N., & Kant, T. (1988). Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations. international Journal of Solids and Structures, 24, 419–451.
Pereira, E.M.B.R. (1993). Elementos Finitos de Tensão, Aplicação à Análise Elástica de Estruturas. (Ph.D Thesis), Instituto Superior Técnico, Lisboa.
Pereira, E.M.B.R., & Freitas, J.A.T. (1996a). A Hybrid-mixed Element Model Based on Legendre Polynomials for Reissner-Mindlin Plates. Computer Methods in Applied Mechanics and Engineering, 136(1-2), 111-126.
Pereira, E.M.B.R., & Freitas, J.A.T. (1996b). A Mixed-Hybrid Finite Element Model based on Orthogonal Functions. International Journal for Numerical Methods in Engineering, 39(8), 1295-1312.
Reddy, J.N. (1984). A simple higher-order theory for laminated composite plates,. Journal of Applied Mechanics, 51(745–752).
Reddy, J.N. (1997). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. London: CRC Press.
Reddy, J.N. (1999). Theory and Analysis of Elastic Plates (Vol. 1). United States of America: Taylor & Francis.
Reddy, J.N. (2004). An Introduction to Nonlinear Finite Element Analysis. Oxford: Oxford University press.
Reis, E.M., & Rizkalla, S.H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Building Materials, 22, 1009-1018.
Sá, Mário F., Gomes, Augusto M., Correia, João R., & Silvestre, Nuno. (2016). Flexural creep response of pultruded GFRP deck panels: Proposal for obtaining full-section viscoelastic moduli and creep coefficients. Composites Part B: Engineering, 98, 213-224. doi: https://doi.org/10.1016/j.compositesb.2016.05.026
Sharaf, T., & A., Fam. (2008). Flexural load tests on sandwich wall panels with different rib configurations. Paper presented at the In Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich.
Silvestre, N., & Camotim, D. (2002a). First-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9), 755-789.
Silvestre, N., & Camotim, D. (2002b). Second-order generalised beam theory for arbitrary orthotropic materials. Thin-Walled Structures, 40(9), 791-820.
Spiegel, R.M., & Liu, J. (1999). Schaum's Mathematical Handbook of Formulas and Tables. New York: Schaum McGraw-Hill.
Timoshenko, S.P., & Goodier, J.N. (1970). Theory of Elasticity. Tóquio: McGraw Hill International Book Company.
Timoshenko, S.P., & Young, D.H. (1965). Theory of Structures. New York: McGraw-Hill.
Turner, M.J., Clough, R. W, Martin, H.C., & Topp, L.J. (1956). Stiffness and Deflection Analysis of Complex Structures. Journal of The Aeronautical Sciences, 23(9), 805-823.
Zienkiewicz, O.C., & Taylor, R.L. (2000). The Finite Element Method: For Solids and Structural Mechanics (Vol. 2). Londres: B-H.