How to cite this paper
Labiodh, B., Hamadi, D & Zatar, A. (2020). Development of a rotation free shell finite element for modeling shell structures.Engineering Solid Mechanics, 8(2), 151-162.
Refrences
Abed-Meraim, F., & Combescure, A. (2002). SHB8PS-a new adaptative, assumed-strain continuum mechanics shell element for impact analysis. Computers & Structures, 80(9-10), 791-803.
Ahmad, S., Irons, B. M., & Zienkiewicz, O. C. (1970). Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering, 2(3), 419-451.
Ashwell, D. G., & Sabir, A. B. (1972). A new cylindrical shell finite element based on simple independent strain functions. International Journal of Mechanical Sciences, 14(3), 171-183.
Batoz, J. L., & Dhatt, G. (1992) Modélisation des Structures par Eléments Finis, vol. 3. Paris: Hermès.
Belarbi, M. T. (2000). Développement de nouveaux éléments finis basés sur le modèle en déformation. Application linéaire et non linéaire (Doctoral dissertation, Thèse de Doctorat d’état, Université de Constantine).
Bogner, F. K., Fox, R. L., & Schmit, L. A. (1967). A cylindrical shell discrete element. AIAA Journal, 5(4), 745-750.
Brunet, M., & Sabourin, F. (1994). Prediction of necking and wrinkles with a simplified triangular shell element in sheet forming. In Proceedings on the Int. Conf. on Metal Forming Process Simulation in Industry, p75-93, Baden-Baden, Germany.
Brunet, M., & Sabourin, F. (1995). A simplified triangular shell element with a necking criterion for 3-D sheet-forming analysis. Journal of Materials Processing Technology, 50(1-4), 238-251.
Cantin, G., & Clough, R. W. (1968). A curved, cylindrical-shell, finite element. AIAA Journal, 6(6), 1057-1062.
Crisfield, M. A., & Peng, X. (1992). Efficient nonlinear shell formulations with large rotations and plasticity. DRJ Owen et al. Computational Plasticity: Models, Software and Applications, Part, 1, 1979-1997.
Guo, Y. Q., Gati, W., Naceur, H., & Batoz, J. L. (2002). An efficient DKT rotation free shell element for springback simulation in sheet metal forming. Computers & structures, 80(27-30), 2299-2312.
Hamadi, D. (2006). Analysis of structures by non-conforming finite elements (Doctoral dissertation, PhD Thesis, Civil engineering department, Biskra University, Algeria).
Hamadi, D., Ayoub, A., & Abdelhafid, O. (2015). A new flat shell finite element for the linear analysis of thin shell structures.European Journal of Computational Mechanics, 24(6), 232-255.
Lindberg, G. M., Olson, M. D., & Cowper, G. R. (1969). New developments in the finite element analysis of shells. Quarterly Bulletin of the Division of Mechanical Engineering and The National Aeronautical Establishment, 4, 1-38.
Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1(1), 3-20.
Mercier, F. (1998). Contribution à la modélisation de l'emboutissage de tôles minces par l'approche inverse (Doctoral dissertation, Université de Technologie de Compiègne).
Morley, L. S. D. (1971). The constant-moment plate-bending element. Journal of Strain Analysis, 6(1), 20-24.
Oñate, E., Agelet de Saracibar, C., & Dalin, J. B. (1989). Finite element analysis of sheet metal forming problems using a selective voided viscous shell membrane formulation. InProceedings of the 4th International Conference on Numerical Methods in Industrial Forming Processes: NUMIFORM (Vol. 89, pp. 23-30).
Oñate, E., & Flores, F. G. (2005). Advances in the formulation of the rotation-free basic shell triangle. Computer Methods in Applied Mechanics and Engineering, 194(21-24), 2406-2443.
Oñate, E., Flores, F. G., & Neamtu, L. (2007). Enhanced rotation-free basic shell triangle. Applications to sheet metal forming. In Computational Plasticity (pp. 239-265). Springer, Dordrecht.
Rio, G., Tathi, B., & Horkay, F. (1993). Introducing bending rigidity in a finite element membrane sheet metal forming model. Int. Sem. Mecamat, 91, 449.
Sabir, A. B., & Lock, A. C. (1972). A curved, cylindrical shell, finite element. International Journal of Mechanical Sciences,14(2), 125-135.
Sabir, A. B., & Salhi, H. Y. (1986). A strain based finite element for general plane elasticity problems in polar coordinates. Research Mechanica, 19(1), 1-16.
Sabir, A. B., & Sfendji, A. (1995). Triangular and rectangular plane elasticity finite elements. Thin-Walled Structures, 21(3), 225-232.
Sabourin, F., & Brunet, M. (2006). Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Engineering Computations, 23(5), 469-502.
Ahmad, S., Irons, B. M., & Zienkiewicz, O. C. (1970). Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering, 2(3), 419-451.
Ashwell, D. G., & Sabir, A. B. (1972). A new cylindrical shell finite element based on simple independent strain functions. International Journal of Mechanical Sciences, 14(3), 171-183.
Batoz, J. L., & Dhatt, G. (1992) Modélisation des Structures par Eléments Finis, vol. 3. Paris: Hermès.
Belarbi, M. T. (2000). Développement de nouveaux éléments finis basés sur le modèle en déformation. Application linéaire et non linéaire (Doctoral dissertation, Thèse de Doctorat d’état, Université de Constantine).
Bogner, F. K., Fox, R. L., & Schmit, L. A. (1967). A cylindrical shell discrete element. AIAA Journal, 5(4), 745-750.
Brunet, M., & Sabourin, F. (1994). Prediction of necking and wrinkles with a simplified triangular shell element in sheet forming. In Proceedings on the Int. Conf. on Metal Forming Process Simulation in Industry, p75-93, Baden-Baden, Germany.
Brunet, M., & Sabourin, F. (1995). A simplified triangular shell element with a necking criterion for 3-D sheet-forming analysis. Journal of Materials Processing Technology, 50(1-4), 238-251.
Cantin, G., & Clough, R. W. (1968). A curved, cylindrical-shell, finite element. AIAA Journal, 6(6), 1057-1062.
Crisfield, M. A., & Peng, X. (1992). Efficient nonlinear shell formulations with large rotations and plasticity. DRJ Owen et al. Computational Plasticity: Models, Software and Applications, Part, 1, 1979-1997.
Guo, Y. Q., Gati, W., Naceur, H., & Batoz, J. L. (2002). An efficient DKT rotation free shell element for springback simulation in sheet metal forming. Computers & structures, 80(27-30), 2299-2312.
Hamadi, D. (2006). Analysis of structures by non-conforming finite elements (Doctoral dissertation, PhD Thesis, Civil engineering department, Biskra University, Algeria).
Hamadi, D., Ayoub, A., & Abdelhafid, O. (2015). A new flat shell finite element for the linear analysis of thin shell structures.European Journal of Computational Mechanics, 24(6), 232-255.
Lindberg, G. M., Olson, M. D., & Cowper, G. R. (1969). New developments in the finite element analysis of shells. Quarterly Bulletin of the Division of Mechanical Engineering and The National Aeronautical Establishment, 4, 1-38.
Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1(1), 3-20.
Mercier, F. (1998). Contribution à la modélisation de l'emboutissage de tôles minces par l'approche inverse (Doctoral dissertation, Université de Technologie de Compiègne).
Morley, L. S. D. (1971). The constant-moment plate-bending element. Journal of Strain Analysis, 6(1), 20-24.
Oñate, E., Agelet de Saracibar, C., & Dalin, J. B. (1989). Finite element analysis of sheet metal forming problems using a selective voided viscous shell membrane formulation. InProceedings of the 4th International Conference on Numerical Methods in Industrial Forming Processes: NUMIFORM (Vol. 89, pp. 23-30).
Oñate, E., & Flores, F. G. (2005). Advances in the formulation of the rotation-free basic shell triangle. Computer Methods in Applied Mechanics and Engineering, 194(21-24), 2406-2443.
Oñate, E., Flores, F. G., & Neamtu, L. (2007). Enhanced rotation-free basic shell triangle. Applications to sheet metal forming. In Computational Plasticity (pp. 239-265). Springer, Dordrecht.
Rio, G., Tathi, B., & Horkay, F. (1993). Introducing bending rigidity in a finite element membrane sheet metal forming model. Int. Sem. Mecamat, 91, 449.
Sabir, A. B., & Lock, A. C. (1972). A curved, cylindrical shell, finite element. International Journal of Mechanical Sciences,14(2), 125-135.
Sabir, A. B., & Salhi, H. Y. (1986). A strain based finite element for general plane elasticity problems in polar coordinates. Research Mechanica, 19(1), 1-16.
Sabir, A. B., & Sfendji, A. (1995). Triangular and rectangular plane elasticity finite elements. Thin-Walled Structures, 21(3), 225-232.
Sabourin, F., & Brunet, M. (2006). Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Engineering Computations, 23(5), 469-502.