How to cite this paper
Morozov, E., Ablyaz, T., Muratov, K., Shlykov, E & Smolentsev, E. (2020). Laser hardening of copper-iron pseudoalloy.Engineering Solid Mechanics, 8(2), 83-92.
Refrences
Astapchik, S. A., Babushkin, V. B., & Ivashko, V. S. (1991). Structural and phase transformations in steels and alloys in laser heat treatment. Metal Science and Heat Treatment, 33(2), 87-93.
Brytan, Z., Dobrzanski, L. A., & Pakiela, W. (2011). Laser surface alloying of sintered stainless steels with SiC powder. Journal of Achievements in Materials and Manufacturing Engineering, 47(1), 42-56.
Brytan, Z., Dobrzański, L., & Pakieła, W. (2011). Sintered stainless steel surface alloyed with Si3N4 powder. Archives of Materials science and Engineering, 50(1), 43-55.
Ivanov, Y. F., Filimonov, S. Y., & Teresov, A. D. (2011). Alloying the surface of carbon steel with copper by electric explosion of wire and subsequent electron beam treatment. Izvestiya Tomskogo Politekhnicheskogo Universiteta, 318(2), 101-105.
Gilev, V. G., Morozov, E. A., Denisova, A. S., & Khanov, A. M. (2012). Investigation into microstructure and surface relief within heat treatment of thin-wall cylinder made of powdered steel--copper pseudo-alloy. Izvestiya Samarskogo nauchnogo tsentra, Russian Academy of Science, 5, 1212-1217.
Gilev, V. G., Morozov, E. A., Purtov, I. B., & Rusin, E. S. (2014). Investigation into microstructure and microhardness of laser melting zones of Ni-resist cast iron, grade ChN16D7GKh. Izvestiya Samarskogo nauchnogo tsentra, Russian Academy of Science, 6, 227-233.
Goia, F. A., & de Lima, M. S. F. (2011). Surface hardening of an AISI D6 cold work steel using a fiber laser. Journal of ASTM International, 8(2), 1-9.
Grigoryants, G. & Vasilyev, V.V. (1987) Spatial structure of irradiation of powerful waveguide and fiber lasers for industry. Vestnik of Bauman MGTU, Series “Engineering”, 6, 5-33.
Grigoryants, G. Safonov, A. N., & Maiorov, V. S., et al. (1987). Distribution of residual stresses on surface of steels hardened by continuous СО2-laser. Metalloved. Term. Obrab., 9, 45-49.
Kannatey-Asibu Jr., E. (2009). Principles of laser materials processing. Wiley, 838 p
Kraposhin V. S. (1994). Influence of residual austenite on properties of steels and cast irons after surface melting. Metalloved. Term. Obrab., 2. 2-5.
Kraposhin, V. S., Shakhlevich, K. V., & Vyaz'mina, T. M. (1989). Influence of laser heating on the quantity residual austenite in steels and cast irons. Metal Science and Heat Treatment, 31(10), 745-757.
Kraposhin, V. S., & Kraposhina I. F. (1989). Influence of parameters of laser irradiation on dimensions of irradiated zones for steel 45. Fiz. Khim. Obrab. Mater., 6, 19-24.
Lisenkov, V. V., Osipov, V. V., & Platonov, V. V. (2013). Interaction of the radiation of the high-power ytterbium-fiber laser with inhomogeneous dielectric targets. Technical Physics, 58(10), 1469-1475.
Popov, V. (2009). Laser hardening of steels: comparison of fiber and СО2-lasers. Fotonika., 4, 18-21.
Postnikov, V. S., Tomsinskii, V. S., & Palkina, Yu. V. (1991). Laser hardening of powder steel, grade ZhGr0,5D3L0,3. MiTOM. 11, 32-34.
Babu, P. D., Buvanashekaran, G., & Balasubramanian, K. R. (2012). Experimental studies on the microstructure and hardness of laser transformation hardening of low alloy steel. Transactions of the Canadian Society for Mechanical Engineering, 36(3), 241-258.
Qiu, F., & Kujanpää, V. (2011). Transformation hardening of medium-carbon steel with a fiber laser: the influence of laser power and laser power density. Mechanics, 17(3), 318-323.
Safonov, A. N. (1996). Structure and microhardness of the surface layers of iron-carbon alloys after laser heat treatment. Metal science and heat treatment, 38(2), 68-74.
Shiue, R. K., & Chen, C. (1992). Laser transformation hardening of tempered 4340 steel. Metallurgical Transactions A, 23(1), 163-170.
Tolochko N. K. (1995). Application of lasers in powder metallurgy. Fiz. Khim. Obrab. Mater., 1, 94- 98.
Turichin, G. A., Zemlyakov, E. V., Pozdeeva, E. Y., Tuominen, J., & Vuoristo, P. (2012). Technological possibilities of laser cladding with the help of powerful fiber lasers. Metal Science and Heat Treatment, 54(3-4), 139-144.
Brytan, Z., Dobrzanski, L. A., & Pakiela, W. (2011). Laser surface alloying of sintered stainless steels with SiC powder. Journal of Achievements in Materials and Manufacturing Engineering, 47(1), 42-56.
Brytan, Z., Dobrzański, L., & Pakieła, W. (2011). Sintered stainless steel surface alloyed with Si3N4 powder. Archives of Materials science and Engineering, 50(1), 43-55.
Ivanov, Y. F., Filimonov, S. Y., & Teresov, A. D. (2011). Alloying the surface of carbon steel with copper by electric explosion of wire and subsequent electron beam treatment. Izvestiya Tomskogo Politekhnicheskogo Universiteta, 318(2), 101-105.
Gilev, V. G., Morozov, E. A., Denisova, A. S., & Khanov, A. M. (2012). Investigation into microstructure and surface relief within heat treatment of thin-wall cylinder made of powdered steel--copper pseudo-alloy. Izvestiya Samarskogo nauchnogo tsentra, Russian Academy of Science, 5, 1212-1217.
Gilev, V. G., Morozov, E. A., Purtov, I. B., & Rusin, E. S. (2014). Investigation into microstructure and microhardness of laser melting zones of Ni-resist cast iron, grade ChN16D7GKh. Izvestiya Samarskogo nauchnogo tsentra, Russian Academy of Science, 6, 227-233.
Goia, F. A., & de Lima, M. S. F. (2011). Surface hardening of an AISI D6 cold work steel using a fiber laser. Journal of ASTM International, 8(2), 1-9.
Grigoryants, G. & Vasilyev, V.V. (1987) Spatial structure of irradiation of powerful waveguide and fiber lasers for industry. Vestnik of Bauman MGTU, Series “Engineering”, 6, 5-33.
Grigoryants, G. Safonov, A. N., & Maiorov, V. S., et al. (1987). Distribution of residual stresses on surface of steels hardened by continuous СО2-laser. Metalloved. Term. Obrab., 9, 45-49.
Kannatey-Asibu Jr., E. (2009). Principles of laser materials processing. Wiley, 838 p
Kraposhin V. S. (1994). Influence of residual austenite on properties of steels and cast irons after surface melting. Metalloved. Term. Obrab., 2. 2-5.
Kraposhin, V. S., Shakhlevich, K. V., & Vyaz'mina, T. M. (1989). Influence of laser heating on the quantity residual austenite in steels and cast irons. Metal Science and Heat Treatment, 31(10), 745-757.
Kraposhin, V. S., & Kraposhina I. F. (1989). Influence of parameters of laser irradiation on dimensions of irradiated zones for steel 45. Fiz. Khim. Obrab. Mater., 6, 19-24.
Lisenkov, V. V., Osipov, V. V., & Platonov, V. V. (2013). Interaction of the radiation of the high-power ytterbium-fiber laser with inhomogeneous dielectric targets. Technical Physics, 58(10), 1469-1475.
Popov, V. (2009). Laser hardening of steels: comparison of fiber and СО2-lasers. Fotonika., 4, 18-21.
Postnikov, V. S., Tomsinskii, V. S., & Palkina, Yu. V. (1991). Laser hardening of powder steel, grade ZhGr0,5D3L0,3. MiTOM. 11, 32-34.
Babu, P. D., Buvanashekaran, G., & Balasubramanian, K. R. (2012). Experimental studies on the microstructure and hardness of laser transformation hardening of low alloy steel. Transactions of the Canadian Society for Mechanical Engineering, 36(3), 241-258.
Qiu, F., & Kujanpää, V. (2011). Transformation hardening of medium-carbon steel with a fiber laser: the influence of laser power and laser power density. Mechanics, 17(3), 318-323.
Safonov, A. N. (1996). Structure and microhardness of the surface layers of iron-carbon alloys after laser heat treatment. Metal science and heat treatment, 38(2), 68-74.
Shiue, R. K., & Chen, C. (1992). Laser transformation hardening of tempered 4340 steel. Metallurgical Transactions A, 23(1), 163-170.
Tolochko N. K. (1995). Application of lasers in powder metallurgy. Fiz. Khim. Obrab. Mater., 1, 94- 98.
Turichin, G. A., Zemlyakov, E. V., Pozdeeva, E. Y., Tuominen, J., & Vuoristo, P. (2012). Technological possibilities of laser cladding with the help of powerful fiber lasers. Metal Science and Heat Treatment, 54(3-4), 139-144.