How to cite this paper
Safarabadi, M., Haghshenas, H & Kelardeh, H. (2020). Design of micro-vibration isolation system for a remote-sensing satellite payload using viscoelastic materials.Engineering Solid Mechanics, 8(1), 69-76.
Refrences
Bialke, B. (1998). High Fidelity Mathematical Modeling of Reaction Wheel Performance. 21st Annual American Astronautical Society Guidance and Control Conference.
Brinson, H. F., Brinson, L., & Catherine. (2015). Polymer Engineering Science and Viscoelasticity : An Introduction: Springer-Verlag New York Inc.
Chae, S.-H., Zhao, J.-H., Edwards, D., & Ho, P. (2010). Characterization of the Viscoelasticity of Molding Compounds in the Time Domain (Vol. 39).
Darabi, B., Rongong, J. A., & Zhang, T. (2016). Viscoelastic granular dampers under low-amplitude vibration. Journal of Vibration and Control, 24(4), 708-721. doi:10.1177/1077546316650098
deng, C., Mu, D., An, Y., Yan, Y., & Zongxuan, L. (2017). Reduction of satellite flywheel microvibration using rubber shock absorbers (Vol. 19).
Deng, C., Mu, D., Guo, J., & Xie, P. (2017). Reducing the negative effects of flywheel disturbance on space camera image quality using the vibration isolation method. Frontiers of Optoelectronics, 10(1), 80-88. doi:10.1007/s12200-017-0665-0
Enhanced technical specification of RW 90. (2011). Astround Feinwerktechnic Adlershof GmbH.
Jones, D. I. G. (2001). Handbook of Viscoelastic Vibration Damping: Chichester ; New York : J. Wiley.
Kamesh, D., Pandiyan, R., & Ghosal, A. (2010). Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft. Journal of Sound and Vibration, 329(17), 3431-3450.
Kamesh, D., Pandiyan, R., & Ghosal, A. (2012). Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform. Journal of Sound and Vibration, 331(6), 1310-1330.
Lee, D.-O., Park, G., & Han, J.-H. (2015). Experimental study on on-orbit and launch environment vibration isolation performance of a vibration isolator using bellows and viscous fluid. Aerospace Science and Technology, 45, 1-9.
Lee, D.-O., Park, G., & Han, J.-H. (2016). Hybrid isolation of micro vibrations induced by reaction wheels. Journal of Sound and Vibration, 363, 1-17.
Liu, C., Jing, X., Daley, S., & Li, F. (2015). Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 56-57, 55-80.
Marneffe, B. D., Avraam, M., Deraemaeker, A., Horodinca, M., & Preumont, A. (2009). Vibration Isolation of Precision Payloads: A Six-Axis Electromagnetic Relaxation Isolator. Journal of Guidance, Control, and Dynamics, 32(2), 395-401. doi:10.2514/1.39414
Oh, H.-U., Izawa, K., & Taniwaki, S. (2005). Development of variable-damping isolator using bio-metal fiber for reaction wheel vibration isolation (Vol. 14).
Oh, H.-U., Taniwaki, S., Kinjyo, N., & Izawa, K. (2006). Flywheel vibration isolation test using a variable-damping isolator (Vol. 15).
Rao, M. D. (2003). Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. Journal of Sound and Vibration, 262(3), 457-474.
Soong, T. T., & Spencer, B. F. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-259.
Sorbothane. (2015a). Data sheet 102, performance curves. https://www.sorbothane.com/Data/Sites/31/pdfs/data-sheets/102-Sorbothane-performance-curves.pdf
Sorbothane. (2015b). Isolation pads, Materrial Property Data. https://www.sorbothane.com/Data/Sites/31/pdfs/product-guides/sorbothane-spg-isolation-pads.pdf
Sorbothane. ( 2015c). Data sheet 101, Material Properties of Sorbothane. http://www.sorbothane.com/Data/Sites/31/pdfs/data-sheets/101-sorbothane-material-properties.pdf
Vaillon, L., & Philippe, C. (1999). Passive and active microvibration control for very high pointing accuracy space systems. Smart Materials and Structures, 8(6), 719.
Wang, C., Chen, Y., & Zhang, Z. (2016). Simulation and experiment on the performance of a passive/active micro-vibration isolator. Journal of Vibration and Control, 24(3), 453-465.
Webster, A. L., & Semke, W. H. (2005). Broad-band Viscoelastic Rotational Vibration Control for Remote Sensing Applications. Modal Analysis, 11(11), 1339-1356. doi:10.1177/1077546305057222
Wei, Z., Li, D., Luo, Q., & Jiang, J. (2015). Modeling and analysis of a flywheel microvibration isolation system for spacecrafts. Advances in Space Research, 55(2), 761-777.
Xu, C., Xu, Z.-D., Ge, T., & Liao, Y.-X. (2016). Modeling and experimentation of a viscoelastic microvibration damper based on a chain network model (Vol. 11).
Xu, C., Xu, Z.-D., Huang, X.-H., Xu, Y.-S., & Ge, T. (2017). Modeling and analysis of a viscoelastic micro-vibration isolation and mitigation platform for spacecraft. Journal of Vibration and Control, 24(18), 4337-4352. doi:10.1177/1077546317724321
Zhang, Y., Guo, Z., He, H., Zhang, J., Liu, M., & Zhou, Z. (2014). A novel vibration isolation system for reaction wheel on space telescopes. Acta Astronautica, 102, 1-13.
Brinson, H. F., Brinson, L., & Catherine. (2015). Polymer Engineering Science and Viscoelasticity : An Introduction: Springer-Verlag New York Inc.
Chae, S.-H., Zhao, J.-H., Edwards, D., & Ho, P. (2010). Characterization of the Viscoelasticity of Molding Compounds in the Time Domain (Vol. 39).
Darabi, B., Rongong, J. A., & Zhang, T. (2016). Viscoelastic granular dampers under low-amplitude vibration. Journal of Vibration and Control, 24(4), 708-721. doi:10.1177/1077546316650098
deng, C., Mu, D., An, Y., Yan, Y., & Zongxuan, L. (2017). Reduction of satellite flywheel microvibration using rubber shock absorbers (Vol. 19).
Deng, C., Mu, D., Guo, J., & Xie, P. (2017). Reducing the negative effects of flywheel disturbance on space camera image quality using the vibration isolation method. Frontiers of Optoelectronics, 10(1), 80-88. doi:10.1007/s12200-017-0665-0
Enhanced technical specification of RW 90. (2011). Astround Feinwerktechnic Adlershof GmbH.
Jones, D. I. G. (2001). Handbook of Viscoelastic Vibration Damping: Chichester ; New York : J. Wiley.
Kamesh, D., Pandiyan, R., & Ghosal, A. (2010). Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft. Journal of Sound and Vibration, 329(17), 3431-3450.
Kamesh, D., Pandiyan, R., & Ghosal, A. (2012). Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform. Journal of Sound and Vibration, 331(6), 1310-1330.
Lee, D.-O., Park, G., & Han, J.-H. (2015). Experimental study on on-orbit and launch environment vibration isolation performance of a vibration isolator using bellows and viscous fluid. Aerospace Science and Technology, 45, 1-9.
Lee, D.-O., Park, G., & Han, J.-H. (2016). Hybrid isolation of micro vibrations induced by reaction wheels. Journal of Sound and Vibration, 363, 1-17.
Liu, C., Jing, X., Daley, S., & Li, F. (2015). Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 56-57, 55-80.
Marneffe, B. D., Avraam, M., Deraemaeker, A., Horodinca, M., & Preumont, A. (2009). Vibration Isolation of Precision Payloads: A Six-Axis Electromagnetic Relaxation Isolator. Journal of Guidance, Control, and Dynamics, 32(2), 395-401. doi:10.2514/1.39414
Oh, H.-U., Izawa, K., & Taniwaki, S. (2005). Development of variable-damping isolator using bio-metal fiber for reaction wheel vibration isolation (Vol. 14).
Oh, H.-U., Taniwaki, S., Kinjyo, N., & Izawa, K. (2006). Flywheel vibration isolation test using a variable-damping isolator (Vol. 15).
Rao, M. D. (2003). Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. Journal of Sound and Vibration, 262(3), 457-474.
Soong, T. T., & Spencer, B. F. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-259.
Sorbothane. (2015a). Data sheet 102, performance curves. https://www.sorbothane.com/Data/Sites/31/pdfs/data-sheets/102-Sorbothane-performance-curves.pdf
Sorbothane. (2015b). Isolation pads, Materrial Property Data. https://www.sorbothane.com/Data/Sites/31/pdfs/product-guides/sorbothane-spg-isolation-pads.pdf
Sorbothane. ( 2015c). Data sheet 101, Material Properties of Sorbothane. http://www.sorbothane.com/Data/Sites/31/pdfs/data-sheets/101-sorbothane-material-properties.pdf
Vaillon, L., & Philippe, C. (1999). Passive and active microvibration control for very high pointing accuracy space systems. Smart Materials and Structures, 8(6), 719.
Wang, C., Chen, Y., & Zhang, Z. (2016). Simulation and experiment on the performance of a passive/active micro-vibration isolator. Journal of Vibration and Control, 24(3), 453-465.
Webster, A. L., & Semke, W. H. (2005). Broad-band Viscoelastic Rotational Vibration Control for Remote Sensing Applications. Modal Analysis, 11(11), 1339-1356. doi:10.1177/1077546305057222
Wei, Z., Li, D., Luo, Q., & Jiang, J. (2015). Modeling and analysis of a flywheel microvibration isolation system for spacecrafts. Advances in Space Research, 55(2), 761-777.
Xu, C., Xu, Z.-D., Ge, T., & Liao, Y.-X. (2016). Modeling and experimentation of a viscoelastic microvibration damper based on a chain network model (Vol. 11).
Xu, C., Xu, Z.-D., Huang, X.-H., Xu, Y.-S., & Ge, T. (2017). Modeling and analysis of a viscoelastic micro-vibration isolation and mitigation platform for spacecraft. Journal of Vibration and Control, 24(18), 4337-4352. doi:10.1177/1077546317724321
Zhang, Y., Guo, Z., He, H., Zhang, J., Liu, M., & Zhou, Z. (2014). A novel vibration isolation system for reaction wheel on space telescopes. Acta Astronautica, 102, 1-13.