How to cite this paper
Rezanoori, A., Ariffin, M., Delgoshaei, A., Jalil, N & Zulkefli, Z. (2019). A new method to improve passenger vehicle safety using intelligent functions in active suspension system.Engineering Solid Mechanics, 7(4), 313-330.
Refrences
Aldair, A., & Wang, W. (2011). Design an intelligent controller for full vehicle nonlinear active suspension systems. International journal on smart sensing and intelligent systems, 4(2), 224-243.
Allison, J. T., Guo, T., & Han, Z. (2014). Co-design of an active suspension using simultaneous dynamic optimization. Journal of Mechanical Design, 136(8), 081003.
Cao, J., Liu, H., Li, P., & Brown, D. J. (2008). State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Transactions on Intelligent Transportation Systems, 9(3), 392-405.
Chen, C.-D., Fan, Y.-W., & Farn, C.-K. (2007). Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior. Transportation Research Part C: Emerging Technologies, 15(5), 300-311.
Chen, H., Sun, P.-Y., & Guo, K.-H. (2002). Constrained h-infinity control of active suspensions: an LMI approach. Paper presented at the The 2002 International Conference on Control and Automation, 2002. ICCA. Final Program and Book of Abstracts.
Choi, S.-B., & Kim, W.-K. (2000). Vibration control of a semi-active suspension featuring electrorheological fluid dampers. Journal of sound and vibration, 3(234), 537-546.
Delgoshaei, A., Ariffin, M., Baharudin, B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering Computations, 6(4), 503-520.
Delgoshaei, A., Ariffin, M. K., Baharudin, B., & Leman, Z. (2014). A backward approach for maximizing net present value of multi-mode pre-emptive resource-constrained project scheduling problem with discounted cash flows using simulated annealing algorithm. International Journal of Industrial Engineering and Management, 5(3), 151-158.
Delgoshaei, A., Rabczuk, T., Ali, A., & Ariffin, M. K. A. (2017). An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources. Annals of Operations Research, 259(1-2), 85-117.
Demić, M., Demić, I., & Diligenski, Ð. (2006). A method of vehicle active suspension design. Forschung im Ingenieurwesen, 70(3), 145.
Du, H., Sze, K. Y., & Lam, J. (2005). Semi-active H∞ control of vehicle suspension with magneto-rheological dampers. Journal of sound and vibration, 283(3-5), 981-996.
Gao, H., Lam, J., & Wang, C. (2006). Multi-objective control of vehicle active suspension systems via load-dependent controllers. Journal of sound and vibration, 290(3-5), 654-675.
Gao, H., Sun, W., & Shi, P. (2009). Robust Sampled-Data $ H_ {\infty} $ Control for Vehicle Active Suspension Systems. IEEE Transactions on control systems technology, 18(1), 238-245.
Gordon, T., & Sharp, R. (1998). On improving the performance of automotive semi-active suspension systems through road preview. Journal of sound and vibration, 217(1), 163-182.
Healey, A., Nathman, E., & Smith, C. (1977). An analytical and experimental study of automobile dynamics with random roadway inputs. Journal of Dynamic Systems, Measurement, and Control, 99(4), 284-292.
Huang, C.-J., Lin, J.-S., & Chen, C.-C. (2010). Road-adaptive algorithm design of half-car active suspension system. Expert Systems with Applications, 37(6), 4392-4402.
Huang, Y., Na, J., Wu, X., Liu, X., & Guo, Y. (2015). Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA transactions, 54, 145-155.
Jamali, A., Salehpour, M., & Nariman-Zadeh, N. (2013). Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multibody System Dynamics, 30(3), 265-285.
Jeong, W., Yoshida, K., Kobayashi, H., & Oda, K. (1990). State Estimation of Road Surface and Vehi cle System Using a Kalman Filter. JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, 33(4), 528-534.
Jonasson, M., & Roos, F. (2008). Design and evaluation of an active electromechanical wheel suspension system. Mechatronics, 18(4), 218-230.
Kaleemullah, M., Faris, W., & Hasbullah, F. (2011). Design of robust h∞, fuzzy and lqr controller for active suspension of a quarter car model. Paper presented at the 2011 4th International Conference on Mechatronics (ICOM).
Leegwater, M. (2007). An active suspension system capable of economically leveling a car during cornering. S010527 (TU/e).
Li, H., Jing, X., & Karimi, H. R. (2013a). Output-feedback-based $ H_ {\infty} $ control for vehicle suspension systems with control delay. IEEE Transactions on industrial electronics, 61(1), 436-446.
Li, H., Jing, X., Lam, H.-K., & Shi, P. (2013b). Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE transactions on cybernetics, 44(7), 1111-1126.
Li, H., Liu, H., Gao, H., & Shi, P. (2011). Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Transactions on Fuzzy Systems, 20(2), 342-357.
Li, H., Yu, J., Hilton, C., & Liu, H. (2012). Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. IEEE Transactions on industrial electronics, 60(8), 3328-3338.
Miller, L. (1986). An introduction to semiactive suspension systems. Lord Library of Technical Articles, Document LL-1204.
Montazeri-Gh, M., Soleymani, M., & Hashemi, S. (2012). Impact of traffic conditions on the active suspension energy regeneration in hybrid electric vehicles. IEEE Transactions on industrial electronics, 60(10), 4546-4553.
Morita, T., Tanaka, T., Kishimoto, N., & Kishi, M. (1992). Ride comfort improvement using preview sensor. Paper presented at the International Symposium on Advanced Vehicle Control, 1992, Yokohama, Japan.
Naude, A., & Snyman, J. (2003). Optimisation of road vehicle passive suspension systems. Part 1. Optimisation algorithm and vehicle model. Applied Mathematical Modelling, 27(4), 249-261.
Onat, C., Kucukdemiral, I., Sivrioglu, S., Yuksek, I., & Cansever, G. (2009). LPV gain-scheduling controller design for a non-linear quarter-vehicle active suspension system. Transactions of the Institute of Measurement and Control, 31(1), 71-95.
Priyandoko, G., Mailah, M., & Jamaluddin, H. (2009). Vehicle active suspension system using skyhook adaptive neuro active force control. Mechanical systems and signal processing, 23(3), 855-868.
Prokop, G., & Sharp, R. (1995). Performance enhancement of limited-bandwidth active automotive suspensions by road preview. IEE Proceedings-Control Theory and Applications, 142(2), 140-148.
Salem, M., & Aly, A. A. (2009). Fuzzy control of a quarter-car suspension system. World Academy of Science, Engineering and Technology, 53(5), 258-263.
Schofield, B., Hagglund, T., & Rantzer, A. (2006). Vehicle dynamics control and controller allocation for rollover prevention. Paper presented at the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.
Sharkawy, A. (2005). Fuzzy and adaptive fuzzy control for the automobiles’ active suspension system. Vehicle system dynamics, 43(11), 795-806.
Sun, W., Gao, H., & Kaynak, O. (2010). Finite Frequency $ H_ {\infty} $ Control for Vehicle Active Suspension Systems. IEEE Transactions on control systems technology, 19(2), 416-422.
Sun, W., Gao, H., & Kaynak, O. (2012a). Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME transactions on mechatronics, 18(3), 1072-1079.
Sun, W., Gao, H., & Kaynak, O. (2014). Vibration isolation for active suspensions with performance constraints and actuator saturation. IEEE/ASME transactions on mechatronics, 20(2), 675-683.
Sun, W., Zhao, Z., & Gao, H. (2012b). Saturated adaptive robust control for active suspension systems. IEEE Transactions on industrial electronics, 60(9), 3889-3896.
Tamboli, J., & Joshi, S. (1999). Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. Journal of sound and vibration, 219(2), 193-205.
YAMADA, H., & Takayoshi, M. (2007). ACTIVE SUSPENSION SYSTEM WITH HIGH-SPEED ON/OFF VALVE (APPLICATION OF PREVIEW CONTROL WITH ADAPTIVE DIGITAL FILTER) Mechatronics for Safety, Security and Dependability in a New Era (pp. 333-338): Elsevier.
Yim, S. (2012). Design of a robust controller for rollover prevention with active suspension and differential braking. Journal of mechanical science and technology, 26(1), 213-222.
Zaremba, A., Hampo, R., & Hrovat, D. (1997). Optimal active suspension design using constrained optimization. Journal of sound and vibration, 207(3), 351-364.
Zheng, X.-c., Yu, F., & Zhang, Y.-c. (2008). A novel energy-regenerative active suspension for vehicles. Journal of Shanghai Jiaotong University (Science), 13(2), 184-188.
Zin, A., Sename, O., Gáspár, P., Dugard, L., & Bokor, J. (2006). An LPV/H~~ Active Suspension Control for Global Chassis Technology: Design and Performance Analysis. Paper presented at the 2006 American Control Conference.
Zuo, L., & Zhang, P.-S. (2013). Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. Journal of Vibration and Acoustics, 135(1), 011002.
Allison, J. T., Guo, T., & Han, Z. (2014). Co-design of an active suspension using simultaneous dynamic optimization. Journal of Mechanical Design, 136(8), 081003.
Cao, J., Liu, H., Li, P., & Brown, D. J. (2008). State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Transactions on Intelligent Transportation Systems, 9(3), 392-405.
Chen, C.-D., Fan, Y.-W., & Farn, C.-K. (2007). Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior. Transportation Research Part C: Emerging Technologies, 15(5), 300-311.
Chen, H., Sun, P.-Y., & Guo, K.-H. (2002). Constrained h-infinity control of active suspensions: an LMI approach. Paper presented at the The 2002 International Conference on Control and Automation, 2002. ICCA. Final Program and Book of Abstracts.
Choi, S.-B., & Kim, W.-K. (2000). Vibration control of a semi-active suspension featuring electrorheological fluid dampers. Journal of sound and vibration, 3(234), 537-546.
Delgoshaei, A., Ariffin, M., Baharudin, B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering Computations, 6(4), 503-520.
Delgoshaei, A., Ariffin, M. K., Baharudin, B., & Leman, Z. (2014). A backward approach for maximizing net present value of multi-mode pre-emptive resource-constrained project scheduling problem with discounted cash flows using simulated annealing algorithm. International Journal of Industrial Engineering and Management, 5(3), 151-158.
Delgoshaei, A., Rabczuk, T., Ali, A., & Ariffin, M. K. A. (2017). An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources. Annals of Operations Research, 259(1-2), 85-117.
Demić, M., Demić, I., & Diligenski, Ð. (2006). A method of vehicle active suspension design. Forschung im Ingenieurwesen, 70(3), 145.
Du, H., Sze, K. Y., & Lam, J. (2005). Semi-active H∞ control of vehicle suspension with magneto-rheological dampers. Journal of sound and vibration, 283(3-5), 981-996.
Gao, H., Lam, J., & Wang, C. (2006). Multi-objective control of vehicle active suspension systems via load-dependent controllers. Journal of sound and vibration, 290(3-5), 654-675.
Gao, H., Sun, W., & Shi, P. (2009). Robust Sampled-Data $ H_ {\infty} $ Control for Vehicle Active Suspension Systems. IEEE Transactions on control systems technology, 18(1), 238-245.
Gordon, T., & Sharp, R. (1998). On improving the performance of automotive semi-active suspension systems through road preview. Journal of sound and vibration, 217(1), 163-182.
Healey, A., Nathman, E., & Smith, C. (1977). An analytical and experimental study of automobile dynamics with random roadway inputs. Journal of Dynamic Systems, Measurement, and Control, 99(4), 284-292.
Huang, C.-J., Lin, J.-S., & Chen, C.-C. (2010). Road-adaptive algorithm design of half-car active suspension system. Expert Systems with Applications, 37(6), 4392-4402.
Huang, Y., Na, J., Wu, X., Liu, X., & Guo, Y. (2015). Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA transactions, 54, 145-155.
Jamali, A., Salehpour, M., & Nariman-Zadeh, N. (2013). Robust Pareto active suspension design for vehicle vibration model with probabilistic uncertain parameters. Multibody System Dynamics, 30(3), 265-285.
Jeong, W., Yoshida, K., Kobayashi, H., & Oda, K. (1990). State Estimation of Road Surface and Vehi cle System Using a Kalman Filter. JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, 33(4), 528-534.
Jonasson, M., & Roos, F. (2008). Design and evaluation of an active electromechanical wheel suspension system. Mechatronics, 18(4), 218-230.
Kaleemullah, M., Faris, W., & Hasbullah, F. (2011). Design of robust h∞, fuzzy and lqr controller for active suspension of a quarter car model. Paper presented at the 2011 4th International Conference on Mechatronics (ICOM).
Leegwater, M. (2007). An active suspension system capable of economically leveling a car during cornering. S010527 (TU/e).
Li, H., Jing, X., & Karimi, H. R. (2013a). Output-feedback-based $ H_ {\infty} $ control for vehicle suspension systems with control delay. IEEE Transactions on industrial electronics, 61(1), 436-446.
Li, H., Jing, X., Lam, H.-K., & Shi, P. (2013b). Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE transactions on cybernetics, 44(7), 1111-1126.
Li, H., Liu, H., Gao, H., & Shi, P. (2011). Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Transactions on Fuzzy Systems, 20(2), 342-357.
Li, H., Yu, J., Hilton, C., & Liu, H. (2012). Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. IEEE Transactions on industrial electronics, 60(8), 3328-3338.
Miller, L. (1986). An introduction to semiactive suspension systems. Lord Library of Technical Articles, Document LL-1204.
Montazeri-Gh, M., Soleymani, M., & Hashemi, S. (2012). Impact of traffic conditions on the active suspension energy regeneration in hybrid electric vehicles. IEEE Transactions on industrial electronics, 60(10), 4546-4553.
Morita, T., Tanaka, T., Kishimoto, N., & Kishi, M. (1992). Ride comfort improvement using preview sensor. Paper presented at the International Symposium on Advanced Vehicle Control, 1992, Yokohama, Japan.
Naude, A., & Snyman, J. (2003). Optimisation of road vehicle passive suspension systems. Part 1. Optimisation algorithm and vehicle model. Applied Mathematical Modelling, 27(4), 249-261.
Onat, C., Kucukdemiral, I., Sivrioglu, S., Yuksek, I., & Cansever, G. (2009). LPV gain-scheduling controller design for a non-linear quarter-vehicle active suspension system. Transactions of the Institute of Measurement and Control, 31(1), 71-95.
Priyandoko, G., Mailah, M., & Jamaluddin, H. (2009). Vehicle active suspension system using skyhook adaptive neuro active force control. Mechanical systems and signal processing, 23(3), 855-868.
Prokop, G., & Sharp, R. (1995). Performance enhancement of limited-bandwidth active automotive suspensions by road preview. IEE Proceedings-Control Theory and Applications, 142(2), 140-148.
Salem, M., & Aly, A. A. (2009). Fuzzy control of a quarter-car suspension system. World Academy of Science, Engineering and Technology, 53(5), 258-263.
Schofield, B., Hagglund, T., & Rantzer, A. (2006). Vehicle dynamics control and controller allocation for rollover prevention. Paper presented at the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.
Sharkawy, A. (2005). Fuzzy and adaptive fuzzy control for the automobiles’ active suspension system. Vehicle system dynamics, 43(11), 795-806.
Sun, W., Gao, H., & Kaynak, O. (2010). Finite Frequency $ H_ {\infty} $ Control for Vehicle Active Suspension Systems. IEEE Transactions on control systems technology, 19(2), 416-422.
Sun, W., Gao, H., & Kaynak, O. (2012a). Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME transactions on mechatronics, 18(3), 1072-1079.
Sun, W., Gao, H., & Kaynak, O. (2014). Vibration isolation for active suspensions with performance constraints and actuator saturation. IEEE/ASME transactions on mechatronics, 20(2), 675-683.
Sun, W., Zhao, Z., & Gao, H. (2012b). Saturated adaptive robust control for active suspension systems. IEEE Transactions on industrial electronics, 60(9), 3889-3896.
Tamboli, J., & Joshi, S. (1999). Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. Journal of sound and vibration, 219(2), 193-205.
YAMADA, H., & Takayoshi, M. (2007). ACTIVE SUSPENSION SYSTEM WITH HIGH-SPEED ON/OFF VALVE (APPLICATION OF PREVIEW CONTROL WITH ADAPTIVE DIGITAL FILTER) Mechatronics for Safety, Security and Dependability in a New Era (pp. 333-338): Elsevier.
Yim, S. (2012). Design of a robust controller for rollover prevention with active suspension and differential braking. Journal of mechanical science and technology, 26(1), 213-222.
Zaremba, A., Hampo, R., & Hrovat, D. (1997). Optimal active suspension design using constrained optimization. Journal of sound and vibration, 207(3), 351-364.
Zheng, X.-c., Yu, F., & Zhang, Y.-c. (2008). A novel energy-regenerative active suspension for vehicles. Journal of Shanghai Jiaotong University (Science), 13(2), 184-188.
Zin, A., Sename, O., Gáspár, P., Dugard, L., & Bokor, J. (2006). An LPV/H~~ Active Suspension Control for Global Chassis Technology: Design and Performance Analysis. Paper presented at the 2006 American Control Conference.
Zuo, L., & Zhang, P.-S. (2013). Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions. Journal of Vibration and Acoustics, 135(1), 011002.