How to cite this paper
Medikonda, S & Tabiei, A. (2019). Non-local averaging in composite micro-mechanical material models.Engineering Solid Mechanics, 7(4), 263-278.
Refrences
Aifantis, E. C. (1987). The physics of plastic deformation. International Journal of Plasticity, 3(3), 211-247.
Andrade, F. X. C., Vogler, M., de Sa, J. C., & Pires, F. A. (2011, May). User-defined nonlocal models in LS-DYNA. In 7th European LS-DYNA Users Conference.
Andrade, F. X. C., César de Sá, J. M. A., & Andrade Pires, F. M. (2011). A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues. International Journal of Damage Mechanics, 20(4), 515-557.
Bazant, Z., & Oh, B. (1983). Crack band theory of concrete. Material Structure., 16(3), 155–177.
Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et construction, 16(3), 155-177.
Bažant, Z. P., & Jirásek, M. (2002). Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 128(11), 1119-1149.
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. In Advances in applied mechanics (Vol. 7, pp. 55-129). Elsevier.
Bazant, Z. P. (2019). Fracture and size effect in concrete and other quasibrittle materials. Routledge.
Bazant, Z. P. (1986). Mechanics of distributed cracking. Applied Mechanics Reviews, 39(5), 675-705.
Belytschko, T., Bažant, Z. P., Yul-Woong, H., & Ta-Peng, C. (1986). Strain-softening materials and finite-element solutions. Computers & Structures, 23(2), 163-180.
de Borst, R., & Verhoosel, C. V. (2018). Damage, material instabilities, and failure. Encyclopedia of Computational Mechanics Second Edition, 1-50.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100-104.
Goldberg, R. K., Roberts, G. D., & Gilat, A. (2005). Implementation of an associative flow rule including hydrostatic stress effects into the high strain rate deformation analysis of polymer matrix composites. Journal of Aerospace Engineering, 18(1), 18-27.
Hallquist, J. (2006). LS-DYNA® theory manual, no. March.
Hallquist, J.O., et al. (2014). LS-DYNA keyword user’s manual. Livermore Softw. Technol. Corp., vol. R7.1, 2014.
Lakes, R. (1995). Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum models for materials with microstructure, 70, 1-25.
Lasry, D., & Belytschko, T. (1988). Localization limiters in transient problems. International Journal of Solids and Structures, 24(6), 581-597.
Lee, T., Leok, M., & McClamroch, N. H. (2011, June). Geometric numerical integration for complex dynamics of tethered spacecraft. In Proceedings of the 2011 American Control Conference (pp. 1885-1891). IEEE.
Medikonda, S., & Tabiei, A. (2018). A nonlinear strain rate and pressure-dependent micro-mechanical composite material model for impact problems. Journal of Thermoplastic Composite Materials, 31(12), 1634-1660.
Medikonda, S., Tabiei, A., & Hamm, R. (2017). A comparative study of the effect of representative volume cell (RVC) boundary conditions on the elastic properties of a micromechanics based unidirectional composite material model. Int. J. Compos. Mater, 7(2), 51-71.
More, S. T., & Bindu, R. S. (2015). Effect of mesh size on finite element analysis of plate structure. Int. J. Eng. Sci. Innovative Technol, 4(3), 181-185.
Park, K., & Paulino, G. H. (2011). Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 64(6), 060802.
Pijaudier-Cabot, G., Bažant, Z. P., & Tabbara, M. (1988). Comparison of various models for strain-softening. Engineering computations, 5(2), 141-150.
Peerlings, R. H., de Borst, R., Brekelmans, W. M., & De Vree, J. H. P. (1996). Gradient enhanced damage for quasi‐brittle materials. International Journal for numerical methods in engineering, 39(19), 3391-3403.
Pijaudier-Cabot, G., & Bažant, Z. P. (1987). Nonlocal damage theory. Journal of engineering mechanics, 113(10), 1512-1533.
Pecknold, D. A., & Rahman, S. (1994). Micromechanics-based structural analysis of thick laminated composites. Computers & structures, 51(2), 163-179.
Raybould, D., & Blazynski, T. Z. (1987). Non-metallic Materials under Shock Loading. Materials at High Strain Rates, 71.
de Sa, J. C., Andrade, F. X. C., & Pires, F. A. (2010). Theoretical and numerical issues on ductile failure prediction-an overview. Computer Methods in Materials Science, 10(4), 279-293.
Sluys, L. J., & De Borst, R. (1992). Wave propagation and localization in a rate-dependent cracked medium—model formulation and one-dimensional examples. International Journal of Solids and Structures, 29(23), 2945-2958.
Sluys, L. J., De Borst, R., & Mühlhaus, H. B. (1993). Wave propagation, localization and dispersion in a gradient-dependent medium. International Journal of Solids and Structures, 30(9), 1153-1171.
Simone, A. (2007). Explicit and implicit gradient-enhanced damage models. Revue européenne de génie civil, 11(7-8), 1023-1044.
Tabiei, A., Yi, W., & Goldberg, R. (2005). Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation. International Journal of Non-Linear Mechanics, 40(7), 957-970.
Tabiei, A., & Aminjikarai, S. B. (2009). A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates. Composite Structures, 88(1), 65-82.
Tabiei, A., & Chen, Q. (2001). Micromechanics based composite material model for crashworthiness explicit finite element simulation. Journal of Thermoplastic Composite Materials, 14(4), 264-289.
Tvergaard, V., & Needleman, A. (1995). Effects of nonlocal damage in porous plastic solids. International Journal of Solids and Structures, 32(8-9), 1063-1077.
Wang, Z., & Xia, Y. (1998). Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal Weibull distribution. Composites science and technology, 57(12), 1599-1607.
Zheng, X., & Binienda, W. K. (2008). Rate-dependent shell element composite material model implementation in LS-DYNA. Journal of Aerospace Engineering, 21(3), 140-151.
Andrade, F. X. C., Vogler, M., de Sa, J. C., & Pires, F. A. (2011, May). User-defined nonlocal models in LS-DYNA. In 7th European LS-DYNA Users Conference.
Andrade, F. X. C., César de Sá, J. M. A., & Andrade Pires, F. M. (2011). A ductile damage nonlocal model of integral-type at finite strains: formulation and numerical issues. International Journal of Damage Mechanics, 20(4), 515-557.
Bazant, Z., & Oh, B. (1983). Crack band theory of concrete. Material Structure., 16(3), 155–177.
Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et construction, 16(3), 155-177.
Bažant, Z. P., & Jirásek, M. (2002). Nonlocal integral formulations of plasticity and damage: survey of progress. Journal of Engineering Mechanics, 128(11), 1119-1149.
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. In Advances in applied mechanics (Vol. 7, pp. 55-129). Elsevier.
Bazant, Z. P. (2019). Fracture and size effect in concrete and other quasibrittle materials. Routledge.
Bazant, Z. P. (1986). Mechanics of distributed cracking. Applied Mechanics Reviews, 39(5), 675-705.
Belytschko, T., Bažant, Z. P., Yul-Woong, H., & Ta-Peng, C. (1986). Strain-softening materials and finite-element solutions. Computers & Structures, 23(2), 163-180.
de Borst, R., & Verhoosel, C. V. (2018). Damage, material instabilities, and failure. Encyclopedia of Computational Mechanics Second Edition, 1-50.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100-104.
Goldberg, R. K., Roberts, G. D., & Gilat, A. (2005). Implementation of an associative flow rule including hydrostatic stress effects into the high strain rate deformation analysis of polymer matrix composites. Journal of Aerospace Engineering, 18(1), 18-27.
Hallquist, J. (2006). LS-DYNA® theory manual, no. March.
Hallquist, J.O., et al. (2014). LS-DYNA keyword user’s manual. Livermore Softw. Technol. Corp., vol. R7.1, 2014.
Lakes, R. (1995). Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum models for materials with microstructure, 70, 1-25.
Lasry, D., & Belytschko, T. (1988). Localization limiters in transient problems. International Journal of Solids and Structures, 24(6), 581-597.
Lee, T., Leok, M., & McClamroch, N. H. (2011, June). Geometric numerical integration for complex dynamics of tethered spacecraft. In Proceedings of the 2011 American Control Conference (pp. 1885-1891). IEEE.
Medikonda, S., & Tabiei, A. (2018). A nonlinear strain rate and pressure-dependent micro-mechanical composite material model for impact problems. Journal of Thermoplastic Composite Materials, 31(12), 1634-1660.
Medikonda, S., Tabiei, A., & Hamm, R. (2017). A comparative study of the effect of representative volume cell (RVC) boundary conditions on the elastic properties of a micromechanics based unidirectional composite material model. Int. J. Compos. Mater, 7(2), 51-71.
More, S. T., & Bindu, R. S. (2015). Effect of mesh size on finite element analysis of plate structure. Int. J. Eng. Sci. Innovative Technol, 4(3), 181-185.
Park, K., & Paulino, G. H. (2011). Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 64(6), 060802.
Pijaudier-Cabot, G., Bažant, Z. P., & Tabbara, M. (1988). Comparison of various models for strain-softening. Engineering computations, 5(2), 141-150.
Peerlings, R. H., de Borst, R., Brekelmans, W. M., & De Vree, J. H. P. (1996). Gradient enhanced damage for quasi‐brittle materials. International Journal for numerical methods in engineering, 39(19), 3391-3403.
Pijaudier-Cabot, G., & Bažant, Z. P. (1987). Nonlocal damage theory. Journal of engineering mechanics, 113(10), 1512-1533.
Pecknold, D. A., & Rahman, S. (1994). Micromechanics-based structural analysis of thick laminated composites. Computers & structures, 51(2), 163-179.
Raybould, D., & Blazynski, T. Z. (1987). Non-metallic Materials under Shock Loading. Materials at High Strain Rates, 71.
de Sa, J. C., Andrade, F. X. C., & Pires, F. A. (2010). Theoretical and numerical issues on ductile failure prediction-an overview. Computer Methods in Materials Science, 10(4), 279-293.
Sluys, L. J., & De Borst, R. (1992). Wave propagation and localization in a rate-dependent cracked medium—model formulation and one-dimensional examples. International Journal of Solids and Structures, 29(23), 2945-2958.
Sluys, L. J., De Borst, R., & Mühlhaus, H. B. (1993). Wave propagation, localization and dispersion in a gradient-dependent medium. International Journal of Solids and Structures, 30(9), 1153-1171.
Simone, A. (2007). Explicit and implicit gradient-enhanced damage models. Revue européenne de génie civil, 11(7-8), 1023-1044.
Tabiei, A., Yi, W., & Goldberg, R. (2005). Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation. International Journal of Non-Linear Mechanics, 40(7), 957-970.
Tabiei, A., & Aminjikarai, S. B. (2009). A strain-rate dependent micro-mechanical model with progressive post-failure behavior for predicting impact response of unidirectional composite laminates. Composite Structures, 88(1), 65-82.
Tabiei, A., & Chen, Q. (2001). Micromechanics based composite material model for crashworthiness explicit finite element simulation. Journal of Thermoplastic Composite Materials, 14(4), 264-289.
Tvergaard, V., & Needleman, A. (1995). Effects of nonlocal damage in porous plastic solids. International Journal of Solids and Structures, 32(8-9), 1063-1077.
Wang, Z., & Xia, Y. (1998). Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal Weibull distribution. Composites science and technology, 57(12), 1599-1607.
Zheng, X., & Binienda, W. K. (2008). Rate-dependent shell element composite material model implementation in LS-DYNA. Journal of Aerospace Engineering, 21(3), 140-151.