Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/ Pure copper

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)
  • SCI (11)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (32)
      • Issue 1 (12)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)

Keywords

Supply chain management(163)
Jordan(161)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
TOPSIS(80)
Job satisfaction(79)
Sustainability(79)
Factor analysis(78)
Social media(78)
Knowledge Management(77)
Genetic Algorithm(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Ahmad Makui(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2168)
Indonesia(1276)
Jordan(783)
India(780)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(91)
Pakistan(84)
Peru(83)
United Kingdom(78)
Nigeria(77)
Morocco(73)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 7 Issue 3 pp. 217-228 , 2019

Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/ Pure copper Pages 217-228 Right click to download the paper Download PDF

Authors: Shubhavardhan Ramadurga Narasimharaju, Surendran Sankunny

DOI: 10.5267/j.esm.2019.5.002

Keywords: Friction stir lap welding, Aluminum, Copper, Interface microstructure, Intermetallic layer, Fracture strength

Abstract: This study aims to understand the uncertainty about the optimum or best pin position (Dp) for friction stir lap welding (FSLW) of Al-Cu. Tensile shear testing is used to determine the Mechanical strength of FSL welds under static loading. Fracture strength (σLap) corresponding to the maximum load in a test over the sample width is used as the strength value. Interface microstructures differ depending on whether the tool pin penetrates the lapping interface. It has been found that σLap values of the defect free weld samples vary quite significantly and in general are significantly higher than those reported in the literature. When the pin penetration is close to zero no intermetallic layers were formed, hence the value of σLap was zero. When the pin penetration is 0.4mm, the commonly observed a thin Al–Cu interface layer forms and this layer does not grow beyond 3µm. It is shown that the thin interfacial layer can withstand a high tensile-shear load and thus the adjacent Al material shears to fracture. When the pin penetrates more than 0.4mm, the commonly observed mix stir zone (MSZ) forms and values of σLap are lower than that of 0.4mm pin penetration welds but remain quite high.

How to cite this paper
Narasimharaju, S & Sankunny, S. (2019). Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/ Pure copper.Engineering Solid Mechanics, 7(3), 217-228.

Refrences
Abdollah-Zadeh, A., Saeid, T., & Sazgari, B. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of alloys and Compounds, 460(1-2), 535-538.
Akbari, M., & Behnagh, R. A. (2012). Dissimilar friction-stir lap joining of 5083 aluminum alloy to CuZn34 brass. Metallurgical and Materials Transactions B, 43(5), 1177-1186.
Akbari, M., Aliha, M. R. M., Keshavarz, S. M. E., & Bonyadi, A. (2016). Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1464420716681591.
Aliha, M. R. M., Kalantari, M. H., Ghoreishi, S. M. N., Torabi, A. R., & Etesam, S. (2019). Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints. Theoretical and Applied Fracture Mechanics, 102243.
Aliha, M. R. M., Shahheidari, M., Bisadi, M., Akbari, M., & Hossain, S. (2016). Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique. The International Journal of Advanced Manufacturing Technology, 86(9-12), 2551-2565.
Carlone, P., Astarita, A., Palazzo, G. S., Paradiso, V., & Squillace, A. (2015). Microstructural aspects in Al–Cu dissimilar joining by FSW. The International Journal of Advanced Manufacturing Technology, 79(5-8), 1109-1116.
DebRoy, T., & Bhadeshia, H. K. D. H. (2010). Friction stir welding of dissimilar alloys–a perspective. Science and Technology of Welding and Joining, 15(4), 266-270.
Elrefaey, A., Takahashi, M., & Ikeuchi, K. (2004). Microstructure of aluminum/copper lap joint by friction stir welding and its performance. Journal of High Temperature Society, 30(5), 286-292.
Elrefaey, A., Takahashi, M., & Ikeuchi, K. (2005). Preliminary investigation of friction stir welding aluminium/copper lap joints. Welding in the World, 49(3-4), 93-101.
Esmaeili, A., Givi, M. B., & Rajani, H. Z. (2011a). A metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30). Materials Science and Engineering: A, 528(22-23), 7093-7102.
Esmaeili, A., Rajani, H. Z., Sharbati, M., Givi, M. B., & Shamanian, M. (2011b). The role of rotation speed on intermetallic compounds formation and mechanical behavior of friction stir welded brass/aluminum 1050 couple. Intermetallics, 19(11), 1711-1719.
Firouzdor, V., & Kou, S. (2012). Al-to-Cu friction stir lap welding. Metallurgical and Materials Transactions A, 43(1), 303-315.
Galvao, I., Oliveira, J. C., Loureiro, A., & Rodrigues, D. M. (2011). Formation and distribution of brittle structures in friction stir welding of aluminium and copper: influence of process parameters. Science and Technology of Welding and Joining, 16(8), 681-689.
Galvão, I., Oliveira, J. C., Loureiro, A., & Rodrigues, D. M. (2012b). Formation and distribution of brittle structures in friction stir welding of aluminium and copper: Influence of shoulder geometry. Intermetallics, 22, 122-128.
Galvao, I., Verdera, D., Gesto, D., Loureiro, A., & Rodrigues, D. M. (2012a). Analysing the challenge of aluminum to copper FSW. In Proceedings of 9th International Symposium on Friction Stir Welding, Huntsville, Alabama, US.
Genevois, C., Girard, M., Huneau, B., Sauvage, X., & Racineux, G. (2011). Interfacial reaction during friction stir welding of Al and Cu. Metallurgical and Materials Transactions A, 42(8), 2290.
Kumbhar, N. T., & Bhanumurthy, K. (2012). Friction stir welding of Al 5052 with Al 6061 alloys. Journal of metallurgy, 2012.
Liu, H. J., Shen, J. J., Zhou, L., Zhao, Y. Q., Liu, C., & Kuang, L. Y. (2011). Microstructural characterisation and mechanical properties of friction stir welded joints of aluminium alloy to copper. Science and Technology of Welding and Joining, 16(1), 92-98.
Lohwasser, D., & Chen, Z. (Eds.). (2009). Friction stir welding: From basics to applications. Elsevier.
Lomolino, S., Tovo, R., & Dos Santos, J. (2005). On the fatigue behaviour and design curves of friction stir butt-welded Al alloys. International Journal of Fatigue, 27(3), 305-316.
Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials science and engineering: R: reports, 50(1-2), 1-78.
Mishra, R. S., & Mahoney, M. W. (2007). Friction stir welding and processing, ASM International. Material Park, Ohio, The Materials Information Society.
Mohammad Aliha, M. R., Fotouhi, Y., & Berto, F. (2018). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(12), 2192-2200.
Murr, L. E. (2010). A review of FSW research on dissimilar metal and alloy systems. Journal of Materials Engineering and Performance, 19(8), 1071-1089.
Nandan, R., DebRoy, T., & Bhadeshia, H. K. D. H. (2008). Recent advances in friction-stir welding–process, weldment structure and properties. Progress in materials science, 53(6), 980-1023.
Ouyang, J., Yarrapareddy, E., & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology, 172(1), 110-122.
Pao, P. S., Gill, S. J., Feng, C. R., & Sankaran, K. K. (2001). Corrosion–fatigue crack growth in friction stir welded Al 7050. Scripta Materialia, 45(5), 605-612.
Rai, R., De, A., Bhadeshia, H. K. D. H., & DebRoy, T. (2011). friction stir welding tools. Science and Technology of welding and Joining, 16(4), 325-342.
Saeid, T., Abdollah-Zadeh, A., & Sazgari, B. (2010). Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. Journal of Alloys and Compounds, 490(1-2), 652-655.
Satya Narayana Gupta, M., Balunaik, B., & Murti, K. G. K. (2012). Effect of Tool Geometry on Joint Properties of Friction Stir Welded Al/Cu Bimetallic Lap Joints. IUP Journal of Mechanical Engineering, 5(1).
Sharma, N., Siddiquee, A. N., Khan, Z. A., & Mohammed, M. T. (2018). Material stirring during FSW of Al–Cu: Effect of pin profile. Materials and Manufacturing Processes, 33(7), 786-794.
Shubhavardhan, R., & Surendran, S. (2018). Microstructure and fracture behavior of friction stir lap welding of dissimilar metals. Engineering Solid Mechanics, 6(1), 1-10.
Sun, Y. F., Fujii, H., Takaki, N., & Okitsu, Y. (2013). Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Materials & design, 47, 350-357.
Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Temple Smith, P., & Dawes, C. J. (1993). Improvements Relating to Friction Welding. International Patent Application No (Vol. 1, p. 6). PCT/GB92/02203 Publication No. WO19930109935.
Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminium alloys. International Materials Reviews, 54(2), 49-93.
Torabi, A. R., Kalantari, M. H., & Aliha, M. R. M. (2018). Fracture analysis of dissimilar Al‐Al friction stir welded joints under tensile/shear loading. Fatigue & Fracture of Engineering Materials & Structures, 41(9), 2040-2053.
Wang, X., Pan, Y., & Lados, D. A. (2018). Friction stir welding of dissimilar Al/Al and Al/non-Al alloys: a review. Metallurgical and Materials Transactions B, 49(4), 2097-2117.
Xue, P., Ni, D. R., Wang, D., Xiao, B. L., & Ma, Z. Y. (2011b). Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials science and engineering: A, 528(13-14), 4683-4689.
Xue, P., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials science and engineering: A, 527(21-22), 5723-5727.
Xue, P., Xiao, B. L., Wang, D., & Ma, Z. Y. (2011a). Achieving high property friction stir welded aluminium/copper lap joint at low heat input. Science and technology of welding and Joining, 16(8), 657-661.
Zettler, R., Da Silva, A. A. M., Rodrigues, S., Blanco, A., & Dos Santos, J. F. (2006). Dissimilar Al to Mg alloy friction stir welds. Advanced Engineering Materials, 8(5), 415-421.
Zhang, W., Shen, Y., Yan, Y., Guo, R., Guan, W., & Guo, G. (2018). Microstructure characterization and mechanical behavior of dissimilar friction stir welded Al/Cu couple with different joint configurations. The International Journal of Advanced Manufacturing Technology, 94(1-4), 1021-1030.

  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2019 | Volume: 7 | Issue: 3 | Views: 1709 | Reviews: 0

Related Articles:
  • Dissimilar alloys (AA6082/AA5083) joining by FSW and parametric optimizatio ...
  • Microstructure and fracture behavior of friction stir lap welding of dissim ...
  • Friction stir welding of dissimilar Al alloys: effect of process parameters ...
  • Effect of transverse speed of the tool on microstructure and mechanical pro ...
  • Optimization of process parameters for friction Stir welding of dissimilar ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com