How to cite this paper
Ansari, A., Bahraseman, H., Mohssenzadeh, M., Haghpanahi, M., Hassani, K & Derakhshandeh, H. (2019). Finite element analysis of fibre-reinforced constitutive formulation of Cadisc-L.Engineering Solid Mechanics, 7(2), 151-162.
Refrences
Adams, M. A., Hutton, W. C., & Stott, J. R. (1980). The resistance to flexion of the lumbar intervertebral joint. Spine, 5(3), 245-253.
Amerian, M., Bahraseman, H. G., Leilnahari, K., Khodalotfi, M., Amerian, M., & Bahmani, A. (2014). Modeling of the Effect of Backpack Load Position on the Lumbar Spine Curvature. Annual Research & Review in Biology, 4(4), 638.
Bahraseman, H. G., Hassani, K., Navidbakhsh, M., Espino, D. M., Kazemi-Saleh, D., & Fatourayee, N. (2013). Estimation of maximum intraventricular pressure: A three-dimensional fluid–structure interaction model. Biomedical engineering online, 12(1), 122.
Bahraseman, H. G., Hassani, K., Khosravi, A., Navidbakhsh, M., Espino, D. M., Fatouraee, N., & Kazemi-Saleh, D. (2014a). Combining numerical and clinical methods to assess aortic valve hemodynamics during exercise. Perfusion, 29(4), 340-350.
Bahraseman, H. G., Hassani, K., Navidbakhsh, M., Espino, D. M., Sani, Z. A., & Fatouraee, N. (2014b). Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Computer Methods in Biomechanics and Biomedical Engineering, 17(16), 1821-1834.
Bahraseman, H., Hamzehei, B., Leilnahari, K., Khosravi, A., & Languri, E. (2015). Experimental and computational study on the effects of wearing neck collar on the carotid blood flow. Engineering Solid Mechanics, 3(1), 27-34.
Bahraseman, H. G., Languri, E. M., Yahyapourjalaly, N., & Espino, D. M. (2016). Fluid-Structure Interaction modeling of aortic valve stenosis at different heart rates. Acta of Bioengineering and Biomechanics, 18(3).
Barnes, D., Johnson, S., Snell, R., & Best, S. (2012). Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly (carbonate urethane) substrates. Journal of the Mechanical Behavior of Biomedical Materials, 6, 128-138.
Benzel, E. C., Lieberman, I. H., Ross, E. R., Linovitz, R. J., Kuras, J., & Zimmers, K. (2011). Mechanical characterization of a viscoelastic disc for lumbar total disc replacement. Journal of Medical Devices, 5(1), 011005.
Berkson, M. H., Nachemson, A., & Schultz, A. (1979). Mechanical properties of human lumbar spine motion segments—part II: responses in compression and shear; influence of gross morphology. Journal of Biomechanical Engineering, 101(1), 53-57.
Brown, T., Hansen, R. J., & Yorra, A. J. (1957). Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs: a preliminary report. JBJS, 39(5), 1135-1164.
Chen, S. H., Zhong, Z. C., Chen, C. S., Chen, W. J., & Hung, C. (2009). Biomechanical comparison between lumbar disc arthroplasty and fusion. Medical Engineering & Physics, 31(2), 244-253.
Chen, C. S., Cheng, C. K., Liu, C. L., & Lo, W. H. (2001). Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering & Physics, 23(7), 485-493.
Denoziere, G. (2004). Numerical modeling of a ligamentous lumbar motion segment (Doctoral dissertation, Georgia Institute of Technology).
Dietrich, M., Kedzior, K., Borkowski, P., NSKI, G. K., Skalski, K., & Zagrajek, T. (2005). A nonlinear analysis of the human vertebral column and medical recommendations that follow. TECHNICAL SCIENCES, 53(3).
Dietrich, M., Kedzior, K., & Zagrajek, T. (1991). A biomechanical model of the human spinal system. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 205(1), 19-26.
Eberlein, R. O. B. E. R. T., Holzapel, G. A., & Schulze-bauer, C. A. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Computer Methods in Biomechanics and Biomedical Engineering, 4(3), 209-229.
Falodi, A. (2010). Prediction of the biomechanical perfomance of a novel total disc replacement (Doctoral dissertation, University of Nottingham).
Gloria, A., De Santis, R., Ambrosio, L., Causa, F., & Tanner, K. E. (2011). A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEXTM device for customized intervertebral disc prosthesis. Journal of Biomaterials Applications, 25(8), 795-810.
Goel, V. K., Fromknecht, S. J., Nishiyama, K., Weinstein, J., & Liu, Y. K. (1985). The role of lumbar spinal elements in flexion. Spine, 10(6), 516-523.
Goel, V. K., Monroe, B. T., Gilbertson, L. G., & Brinckmann, P. (1995). Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine, 20(6), 689-698.
Gwynne, J. H., Oyen, M. L., & Cameron, R. E. (2010). Preparation of polymeric samples containing a graduated modulus region and development of nanoindentation linescan techniques. Polymer Testing, 29(4), 494-502.
Gwynne, J. H., & Cameron, R. E. (2010). Using small angle X-ray scattering to investigate the variation in composition across a graduated region within an intervertebral disc prosthesis. Journal of Materials Science: Materials in Medicine, 21(2), 787-795.
Holzapfel, G. A. (2002). Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica, 37(4), 489-490.
Holzapfel, G. A., & Stadler, M. (2006). Role of facet curvature for accurate vertebral facet load analysis. European Spine Journal, 15(6), 849-856.
Iatridis, J. C., Weidenbaum, M., Setton, L. A., & Mow, V. C. (1996). Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine, 21(10), 1174-1184.
Johnson, S., Naylor, J., & McNally, D. (2011). In vitro biomechanical comparison of the native intervertebral disc and a compliant artificial lumbar disc replacement (Cadisc-L). The Spine Journal, 11(10), S153.
Joshi, A., Fussell, G., Thomas, J., Hsuan, A., Lowman, A., Karduna, A., ... & Marcolongo, M. (2006). Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials, 27(2), 176-184.
Kędzior, K., Krzesiński, G., & Zagrajek, T. (1996). Numerical simulation of the scoliosis as caused by mechanical response of the spinal segment to external load. In Lecture Notes of the Intern. Centre of Biocybernetics Seminars (Vol. 33, pp. 158-164).
Khosravi, A., Bahraseman, H., Hassani, K., & Kazemi-Saleh, D. (2014a). Numerical method to measure velocity integration, stroke volume and cardiac output while rest: using 2D fluid-solid interaction model. Engineering Solid Mechanics, 2(2), 91-100.
Khosravi, A., Bahraseman, H. G., Saleh, A. V., & Kazemi-Saleh, D. (2014b). Initial insight to effect of exercise on maximum pressure in the left ventricle using 2D fluid-structure interaction model. Annual Research & Review in Biology, 4(18), 2867.
Langrana, N. A., Lee, C. K., & Yang, S. W. (1991). Finite-element modeling of the synthetic intervertebral disc. Spine, 16(6 Suppl), S245-52.
Leilnahari, K., Bahraseman, H. G., & Sadeghy, M. (2013). Assessment of an arm-positioning pillow to prevent waking paresthesia symptoms related to side sleepers: using echo-Doppler imaging.
Logan, D.L., A first course in the finite element method. 2nd ed. 1992, Boston: PWS-Kent Pub. Co. xx, 662 p.
McNally, D., Naylor, J., & Johnson, S. (2012). An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion. European Spine Journal, 21(5), 612-617.
Miller, J. A. A., Schultz, A. B., Warwick, D. N., & Spencer, D. L. (1986). Mechanical properties of lumbar spine motion segments under large loads. Journal of Biomechanics, 19(1), 79-84.
Nachemson, A. L., Schultz, A. B., & Berkson, M. H. (1979). Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration. Spine, 4(1), 1-8.
Natarajan, R. N., & Andersson, G. B. (1999). The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine, 24(18), 1873.
Noailly, J., Ambrosio, L., Tanner, K. E., Planell, J. A., & Lacroix, D. (2012). In silico evaluation of a new composite disc substitute with a L3–L5 lumbar spine finite element model. European Spine Journal, 21(5), 675-687.
Noailly, J., Lacroix, D., & Planell, J. A. (2005). Finite element study of a novel intervertebral disc substitute. Spine, 30(20), 2257-2264.
Noailly, J., Wilke, H. J., Planell, J. A., & Lacroix, D. (2007). How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. Journal of Biomechanics, 40(11), 2414-2425.
Polikeit, A., Ferguson, S. J., Nolte, L. P., & Orr, T. E. (2003). Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. European Spine Journal, 12(4), 413-420.
Poor, M. G., Bahraseman, H. G., Pouranbarani, E., Sarang, R., Shafieian, M., & Leilnahari, K. (2017). A Comparative Study in Cervical Muscle Activities during Various Resting Postures Using Electromyography. American Journal of Biomedical Sciences, 9(3).
Rohlmann, A., Zander, T., Schmidt, H., Wilke, H. J., & Bergmann, G. (2006). Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of Biomechanics, 39(13), 2484-2490.
Sabooni, H., Hassani, K., & Bahraseman, H. G. (2015). Modeling of iliac artery aneurysm using fluid–structure interaction. Journal of Mechanics in Medicine and Biology, 15(01), 1550041.
Schultz, A. B., Warwick, D. N., Berkson, M. H., & Nachemson, A. L. (1979). Mechanical properties of human lumbar spine motion segments—Part I: responses in flexion, extension, lateral bending, and torsion. Journal of Biomechanical Engineering, 101(1), 46-52.
Shin, D. S., Lee, K., & Kim, D. (2007). Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Computer-Aided Design, 39(7), 559-567.
Shirazi-Adl, A. A. A. S. S., Ahmed, A. M., & Shrivastava, S. C. (1986). Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine, 11(9), 914-927.
Skalli, W. (1999). Spine biomechanics. From basic research to clinical applications. Acta of Bioengineering and Biomechanics, 1(Suppl 1), 379-384.
Tencer, A. F., Ahmed, A. M., & Burke, D. L. (1982). Some static mechanical properties of the lumbar intervertebral joint, intact and injured. Journal of Biomechanical Engineering, 104(3), 193-201.
Twomey, L. T., & Taylor, J. R. (1983). Sagittal movements of the human lumbar vertebral column: a quantitative study of the role of the posterior vertebral elements. Archives of Physical Medicine and Rehabilitation, 64(7), 322-325.
Van den Broek, P. R., Huyghe, J. M., Wilson, W., & Ito, K. (2012). Design of next generation total disk replacements. Journal of Biomechanics, 45(1), 134-140.
Zienkiewicz, O.C., & Taylor, R.L (1991). The Finite Element Method. McGraw-Hill, London.
Amerian, M., Bahraseman, H. G., Leilnahari, K., Khodalotfi, M., Amerian, M., & Bahmani, A. (2014). Modeling of the Effect of Backpack Load Position on the Lumbar Spine Curvature. Annual Research & Review in Biology, 4(4), 638.
Bahraseman, H. G., Hassani, K., Navidbakhsh, M., Espino, D. M., Kazemi-Saleh, D., & Fatourayee, N. (2013). Estimation of maximum intraventricular pressure: A three-dimensional fluid–structure interaction model. Biomedical engineering online, 12(1), 122.
Bahraseman, H. G., Hassani, K., Khosravi, A., Navidbakhsh, M., Espino, D. M., Fatouraee, N., & Kazemi-Saleh, D. (2014a). Combining numerical and clinical methods to assess aortic valve hemodynamics during exercise. Perfusion, 29(4), 340-350.
Bahraseman, H. G., Hassani, K., Navidbakhsh, M., Espino, D. M., Sani, Z. A., & Fatouraee, N. (2014b). Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Computer Methods in Biomechanics and Biomedical Engineering, 17(16), 1821-1834.
Bahraseman, H., Hamzehei, B., Leilnahari, K., Khosravi, A., & Languri, E. (2015). Experimental and computational study on the effects of wearing neck collar on the carotid blood flow. Engineering Solid Mechanics, 3(1), 27-34.
Bahraseman, H. G., Languri, E. M., Yahyapourjalaly, N., & Espino, D. M. (2016). Fluid-Structure Interaction modeling of aortic valve stenosis at different heart rates. Acta of Bioengineering and Biomechanics, 18(3).
Barnes, D., Johnson, S., Snell, R., & Best, S. (2012). Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly (carbonate urethane) substrates. Journal of the Mechanical Behavior of Biomedical Materials, 6, 128-138.
Benzel, E. C., Lieberman, I. H., Ross, E. R., Linovitz, R. J., Kuras, J., & Zimmers, K. (2011). Mechanical characterization of a viscoelastic disc for lumbar total disc replacement. Journal of Medical Devices, 5(1), 011005.
Berkson, M. H., Nachemson, A., & Schultz, A. (1979). Mechanical properties of human lumbar spine motion segments—part II: responses in compression and shear; influence of gross morphology. Journal of Biomechanical Engineering, 101(1), 53-57.
Brown, T., Hansen, R. J., & Yorra, A. J. (1957). Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs: a preliminary report. JBJS, 39(5), 1135-1164.
Chen, S. H., Zhong, Z. C., Chen, C. S., Chen, W. J., & Hung, C. (2009). Biomechanical comparison between lumbar disc arthroplasty and fusion. Medical Engineering & Physics, 31(2), 244-253.
Chen, C. S., Cheng, C. K., Liu, C. L., & Lo, W. H. (2001). Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering & Physics, 23(7), 485-493.
Denoziere, G. (2004). Numerical modeling of a ligamentous lumbar motion segment (Doctoral dissertation, Georgia Institute of Technology).
Dietrich, M., Kedzior, K., Borkowski, P., NSKI, G. K., Skalski, K., & Zagrajek, T. (2005). A nonlinear analysis of the human vertebral column and medical recommendations that follow. TECHNICAL SCIENCES, 53(3).
Dietrich, M., Kedzior, K., & Zagrajek, T. (1991). A biomechanical model of the human spinal system. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 205(1), 19-26.
Eberlein, R. O. B. E. R. T., Holzapel, G. A., & Schulze-bauer, C. A. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Computer Methods in Biomechanics and Biomedical Engineering, 4(3), 209-229.
Falodi, A. (2010). Prediction of the biomechanical perfomance of a novel total disc replacement (Doctoral dissertation, University of Nottingham).
Gloria, A., De Santis, R., Ambrosio, L., Causa, F., & Tanner, K. E. (2011). A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEXTM device for customized intervertebral disc prosthesis. Journal of Biomaterials Applications, 25(8), 795-810.
Goel, V. K., Fromknecht, S. J., Nishiyama, K., Weinstein, J., & Liu, Y. K. (1985). The role of lumbar spinal elements in flexion. Spine, 10(6), 516-523.
Goel, V. K., Monroe, B. T., Gilbertson, L. G., & Brinckmann, P. (1995). Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine, 20(6), 689-698.
Gwynne, J. H., Oyen, M. L., & Cameron, R. E. (2010). Preparation of polymeric samples containing a graduated modulus region and development of nanoindentation linescan techniques. Polymer Testing, 29(4), 494-502.
Gwynne, J. H., & Cameron, R. E. (2010). Using small angle X-ray scattering to investigate the variation in composition across a graduated region within an intervertebral disc prosthesis. Journal of Materials Science: Materials in Medicine, 21(2), 787-795.
Holzapfel, G. A. (2002). Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica, 37(4), 489-490.
Holzapfel, G. A., & Stadler, M. (2006). Role of facet curvature for accurate vertebral facet load analysis. European Spine Journal, 15(6), 849-856.
Iatridis, J. C., Weidenbaum, M., Setton, L. A., & Mow, V. C. (1996). Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine, 21(10), 1174-1184.
Johnson, S., Naylor, J., & McNally, D. (2011). In vitro biomechanical comparison of the native intervertebral disc and a compliant artificial lumbar disc replacement (Cadisc-L). The Spine Journal, 11(10), S153.
Joshi, A., Fussell, G., Thomas, J., Hsuan, A., Lowman, A., Karduna, A., ... & Marcolongo, M. (2006). Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials, 27(2), 176-184.
Kędzior, K., Krzesiński, G., & Zagrajek, T. (1996). Numerical simulation of the scoliosis as caused by mechanical response of the spinal segment to external load. In Lecture Notes of the Intern. Centre of Biocybernetics Seminars (Vol. 33, pp. 158-164).
Khosravi, A., Bahraseman, H., Hassani, K., & Kazemi-Saleh, D. (2014a). Numerical method to measure velocity integration, stroke volume and cardiac output while rest: using 2D fluid-solid interaction model. Engineering Solid Mechanics, 2(2), 91-100.
Khosravi, A., Bahraseman, H. G., Saleh, A. V., & Kazemi-Saleh, D. (2014b). Initial insight to effect of exercise on maximum pressure in the left ventricle using 2D fluid-structure interaction model. Annual Research & Review in Biology, 4(18), 2867.
Langrana, N. A., Lee, C. K., & Yang, S. W. (1991). Finite-element modeling of the synthetic intervertebral disc. Spine, 16(6 Suppl), S245-52.
Leilnahari, K., Bahraseman, H. G., & Sadeghy, M. (2013). Assessment of an arm-positioning pillow to prevent waking paresthesia symptoms related to side sleepers: using echo-Doppler imaging.
Logan, D.L., A first course in the finite element method. 2nd ed. 1992, Boston: PWS-Kent Pub. Co. xx, 662 p.
McNally, D., Naylor, J., & Johnson, S. (2012). An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion. European Spine Journal, 21(5), 612-617.
Miller, J. A. A., Schultz, A. B., Warwick, D. N., & Spencer, D. L. (1986). Mechanical properties of lumbar spine motion segments under large loads. Journal of Biomechanics, 19(1), 79-84.
Nachemson, A. L., Schultz, A. B., & Berkson, M. H. (1979). Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration. Spine, 4(1), 1-8.
Natarajan, R. N., & Andersson, G. B. (1999). The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine, 24(18), 1873.
Noailly, J., Ambrosio, L., Tanner, K. E., Planell, J. A., & Lacroix, D. (2012). In silico evaluation of a new composite disc substitute with a L3–L5 lumbar spine finite element model. European Spine Journal, 21(5), 675-687.
Noailly, J., Lacroix, D., & Planell, J. A. (2005). Finite element study of a novel intervertebral disc substitute. Spine, 30(20), 2257-2264.
Noailly, J., Wilke, H. J., Planell, J. A., & Lacroix, D. (2007). How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. Journal of Biomechanics, 40(11), 2414-2425.
Polikeit, A., Ferguson, S. J., Nolte, L. P., & Orr, T. E. (2003). Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. European Spine Journal, 12(4), 413-420.
Poor, M. G., Bahraseman, H. G., Pouranbarani, E., Sarang, R., Shafieian, M., & Leilnahari, K. (2017). A Comparative Study in Cervical Muscle Activities during Various Resting Postures Using Electromyography. American Journal of Biomedical Sciences, 9(3).
Rohlmann, A., Zander, T., Schmidt, H., Wilke, H. J., & Bergmann, G. (2006). Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of Biomechanics, 39(13), 2484-2490.
Sabooni, H., Hassani, K., & Bahraseman, H. G. (2015). Modeling of iliac artery aneurysm using fluid–structure interaction. Journal of Mechanics in Medicine and Biology, 15(01), 1550041.
Schultz, A. B., Warwick, D. N., Berkson, M. H., & Nachemson, A. L. (1979). Mechanical properties of human lumbar spine motion segments—Part I: responses in flexion, extension, lateral bending, and torsion. Journal of Biomechanical Engineering, 101(1), 46-52.
Shin, D. S., Lee, K., & Kim, D. (2007). Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Computer-Aided Design, 39(7), 559-567.
Shirazi-Adl, A. A. A. S. S., Ahmed, A. M., & Shrivastava, S. C. (1986). Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine, 11(9), 914-927.
Skalli, W. (1999). Spine biomechanics. From basic research to clinical applications. Acta of Bioengineering and Biomechanics, 1(Suppl 1), 379-384.
Tencer, A. F., Ahmed, A. M., & Burke, D. L. (1982). Some static mechanical properties of the lumbar intervertebral joint, intact and injured. Journal of Biomechanical Engineering, 104(3), 193-201.
Twomey, L. T., & Taylor, J. R. (1983). Sagittal movements of the human lumbar vertebral column: a quantitative study of the role of the posterior vertebral elements. Archives of Physical Medicine and Rehabilitation, 64(7), 322-325.
Van den Broek, P. R., Huyghe, J. M., Wilson, W., & Ito, K. (2012). Design of next generation total disk replacements. Journal of Biomechanics, 45(1), 134-140.
Zienkiewicz, O.C., & Taylor, R.L (1991). The Finite Element Method. McGraw-Hill, London.