How to cite this paper
Khatib, N., Ouacha, E., Faiz, B., Ezzaidi, M & Banouni, H. (2019). Analysis of the attenuative behaviour of accelerated cement based materials through a series of ultrasound Pulse Echo measurements.Engineering Solid Mechanics, 7(2), 109-120.
Refrences
ASTM standard test method for time of setting of Portland cement pastes containing accelerating admixtures for shotcrete by the use of Gillmore needles (C 1102-88). Annual book of ASTM standards, V. 02-02, 2000, Philadelphia, 568 – 569
Bita, H., Faiz, B., Moudden, A., Lotfi, H., Ouacha, E. H., & Banouni, H. (2017). Ultrasound monitoring of a mortar hydration using Argand Diagram: The effect of sand grain size and temperature. Construction and Building Materials, 155, 1003-1012.
De Belie, N., Grosse, C. U., Kurz, J., & Reinhardt, H. W. (2005). Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour. Cement and Concrete Research, 35(11), 2087-2094.
Grosse, C. U., & Reinhardt, H. W. (2000). Ultrasound technique for quality control of cementitious materials. In Proceedings of the 15th Conference on Nondestructive Testing (Vol. 15).
Khatib, N., Ouacha H., Faiz, B., Ezzaidi M. & Banouni, H. (2018). Ultrasound study of setting and hardening behaviour of mortar using Portland composite cements CPJ45 and CPJ35 and different dosages of an Alkali-free setting accelerator for Shotcrete. Journal of Engineering and Applied Sciences, 13, 7150-7155.
Lofti, H., Faiz, B., Moudden, A., Menou, A., Izbaim, I., Maze, G., & Decultot, D. (2009). Ultrasonic Characterization and Hardening of Mortar Using the Reflection Technique. High Temperature Materials and Processes, 28(4), 263-270.
Lotfi, H, Moudden, A. & Faiz, B. (2013). Processing of reflection coefficient of signals backscattered by mortar using an ultrasonic technique. American Journal of Signal Processing, 3(2), 17-24
Moroccan Industrial Standards Service (SNIMA), Binders Hydraulic-Cement-Composition, specifications and conformity criteria REV, NM 10.1.004, 24p, 2003.
T.A. Melbye, Sprayed Concrete for Rock Support, 5th ed., MBT International Underground Construction Group, Zurich, Switzerland, 1996 (188 pp.).
Pinkerton, J. M. M. (1947). A pulse method for the measurement of ultrasonic absorption in liquids: results for water. Nature, 160(4056), 128.
Popovics, S. (1969). Effect of Porosity on the Strength of Concrete. Journal of materials.
Powers, T. C. (1947). Physical properties of hardened Portland cement paste, Part 6. Relation of physical characteristics the paste to compressive strength. ACI Journal, 43(9), 845-880.
Reinhardt, H. W., & Grosse, C. U. (2004). Continuous monitoring of setting and hardening of mortar and concrete. Construction and Building Materials, 18(3), 145-154.
Reinhardt, H. W., Grosse, C. U., & Herb, A. T. (2000). Ultrasonic monitoring of setting and hardening of cement mortar—A new device. Materials and Structures, 33(9), 581-583.
Reinhardt, H. W., Grosse, C. W., Herb, A., Weiler, B., & Schmidt, G. (2003). U.S. Patent No. 6,655,213. Washington, DC: U.S. Patent and Trademark Office.
Robeyst, N., Gruyaert, E., Grosse, C. U., & De Belie, N. (2008). Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cement and Concrete research, 38(10), 1169-1176.
Roy, D. M., & Gouda, G. R. (1975). Optimization of strength in cement pastes. Cement and Concrete Research, 5(2), 153-162.
Schmerr, L. W. (2016). Fundamentals of ultrasonic nondestructive evaluation. New York: Springer.
Trtnik, G., Turk, G., Kavčič, F., & Bosiljkov, V. B. (2008). Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste. Cement and Concrete Research, 38(11), 1336-1342.
Zhu, J., Kee, S. H., Han, D., & Tsai, Y. T. (2011). Effects of air voids on ultrasonic wave propagation in early age cement pastes. Cement and Concrete Research, 41(8), 872-881.
Bita, H., Faiz, B., Moudden, A., Lotfi, H., Ouacha, E. H., & Banouni, H. (2017). Ultrasound monitoring of a mortar hydration using Argand Diagram: The effect of sand grain size and temperature. Construction and Building Materials, 155, 1003-1012.
De Belie, N., Grosse, C. U., Kurz, J., & Reinhardt, H. W. (2005). Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour. Cement and Concrete Research, 35(11), 2087-2094.
Grosse, C. U., & Reinhardt, H. W. (2000). Ultrasound technique for quality control of cementitious materials. In Proceedings of the 15th Conference on Nondestructive Testing (Vol. 15).
Khatib, N., Ouacha H., Faiz, B., Ezzaidi M. & Banouni, H. (2018). Ultrasound study of setting and hardening behaviour of mortar using Portland composite cements CPJ45 and CPJ35 and different dosages of an Alkali-free setting accelerator for Shotcrete. Journal of Engineering and Applied Sciences, 13, 7150-7155.
Lofti, H., Faiz, B., Moudden, A., Menou, A., Izbaim, I., Maze, G., & Decultot, D. (2009). Ultrasonic Characterization and Hardening of Mortar Using the Reflection Technique. High Temperature Materials and Processes, 28(4), 263-270.
Lotfi, H, Moudden, A. & Faiz, B. (2013). Processing of reflection coefficient of signals backscattered by mortar using an ultrasonic technique. American Journal of Signal Processing, 3(2), 17-24
Moroccan Industrial Standards Service (SNIMA), Binders Hydraulic-Cement-Composition, specifications and conformity criteria REV, NM 10.1.004, 24p, 2003.
T.A. Melbye, Sprayed Concrete for Rock Support, 5th ed., MBT International Underground Construction Group, Zurich, Switzerland, 1996 (188 pp.).
Pinkerton, J. M. M. (1947). A pulse method for the measurement of ultrasonic absorption in liquids: results for water. Nature, 160(4056), 128.
Popovics, S. (1969). Effect of Porosity on the Strength of Concrete. Journal of materials.
Powers, T. C. (1947). Physical properties of hardened Portland cement paste, Part 6. Relation of physical characteristics the paste to compressive strength. ACI Journal, 43(9), 845-880.
Reinhardt, H. W., & Grosse, C. U. (2004). Continuous monitoring of setting and hardening of mortar and concrete. Construction and Building Materials, 18(3), 145-154.
Reinhardt, H. W., Grosse, C. U., & Herb, A. T. (2000). Ultrasonic monitoring of setting and hardening of cement mortar—A new device. Materials and Structures, 33(9), 581-583.
Reinhardt, H. W., Grosse, C. W., Herb, A., Weiler, B., & Schmidt, G. (2003). U.S. Patent No. 6,655,213. Washington, DC: U.S. Patent and Trademark Office.
Robeyst, N., Gruyaert, E., Grosse, C. U., & De Belie, N. (2008). Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cement and Concrete research, 38(10), 1169-1176.
Roy, D. M., & Gouda, G. R. (1975). Optimization of strength in cement pastes. Cement and Concrete Research, 5(2), 153-162.
Schmerr, L. W. (2016). Fundamentals of ultrasonic nondestructive evaluation. New York: Springer.
Trtnik, G., Turk, G., Kavčič, F., & Bosiljkov, V. B. (2008). Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste. Cement and Concrete Research, 38(11), 1336-1342.
Zhu, J., Kee, S. H., Han, D., & Tsai, Y. T. (2011). Effects of air voids on ultrasonic wave propagation in early age cement pastes. Cement and Concrete Research, 41(8), 872-881.