How to cite this paper
Khansari, N., Farrokhi, A & Mosavi, A. (2019). Orthotropic mode II shear test fixture: Iosipesque modification.Engineering Solid Mechanics, 7(2), 93-108.
Refrences
Ahmad, J. (1993). A micromechanics based representation of combined mode I and II toughness of brittle materials and interfaces. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY, 115, 101-101.
Akbardoost, J., & Rastin, A. (2015). Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading. Theoretical and Applied Fracture Mechanics, 76, 75-90.
Afendi, M., Majid, M. A., Daud, R., Rahman, A. A., & Teramoto, T. (2013). Strength prediction and reliability of brittle epoxy adhesively bonded dissimilar joint. International journal of adhesion and adhesives, 45, 21-31.
Aliha, M. R. M., & Ayatollahi, M. R. (2008). On mixed-mode I/II crack growth in dental resin materials. Scripta Materialia, 59(2), 258-261.
Aliha, M. R. M., & Saghafi, H. (2013). The effects of thickness and Poisson’s ratio on 3D mixed-mode fracture. Engineering Fracture Mechanics, 98, 15-28.
Aliha, M. R. M., Ayatollahi, M. R., & Kharazi, B. (2009e). Mode II brittle fracture assessment using ASFPB specimen. International journal of fracture, 159(2), 241.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016). Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens. European Journal of Mechanics-A/Solids, 58, 148-162.
Aliha, M. R. M., Berto, F., Mousavi, A., & Razavi, S. M. J. (2017d). On the applicability of ASED criterion for predicting mixed mode I+ II fracture toughness results of a rock material. Theoretical and Applied Fracture Mechanics, 92, 198-204.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock mechanics and rock engineering, 46(5), 1023-1034.
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017a). The influence of specimen type on tensile fracture toughness of rock materials. Pure and Applied Geophysics, 174(3), 1237-1253.
Aliha, M. R. M., Razmi, A., & Mansourian, A. (2017c). The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials. Engineering Fracture Mechanics, 182, 322-336.
Aliha, M. R. M., Sarbijan, M. J., & Bahmani, A. (2017b). Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations. Construction and Building Materials, 155, 789-799.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M., & Ayatollahi, M. R. (2012). Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 93, 153-167.
Ameri, M., Nowbakht, S., Molayem, M., & Aliha, M. R. M. (2016). Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue & fracture of engineering materials & structures, 39(7), 896-906.
ASTM, E. (2003). 691-99. Standard practice for conducting an interlaboratory study to determine the precision of a test method. Annu. Book of ASTM Stand, 14, 203-224.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), 175-182.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Barnes, J. A., Kumosa, M., & Hull, D. (1987). Theoretical and experimental evaluation of the Iosipescu shear test. Composites science and technology, 28(4), 251-268.
Bathe, K. J. (2007). Finite element method. Wiley encyclopedia of computer science and engineering, 1-12.
Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element‐free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229-256.
Berto, F., Lazzarin, P., & Marangon, C. (2012). Brittle fracture of U-notched graphite plates under mixed mode loading. Materials & Design, 41, 421-432.
Bland, J. M., & Altman, D. G. (1996). Statistics notes: measurement error. Bmj, 312(7047), 1654.
Bocca, P., Carpinteri, A., & Valente, S. (1991). Mixed mode fracture of concrete. International Journal of Solids and Structures, 27(9), 1139-1153.
Boothroyd, G. (2005). Assembly automation and product design. CRC Press.
Bradley, L. R., Bowen, C. R., McEnaney, B., & Johnson, D. C. (2007). Shear properties of a carbon/carbon composite with non-woven felt and continuous fibre reinforcement layers. Carbon, 45(11), 2178-2187.
Brebbia, C. A. (1980). The boundary element method for engineers (No. BOOK). Pentech press.
Broughton, W. R., Kumosa, M., & Hull, D. (1990). Analysis of the Iosipescu shear test as applied to unidirectional carbon-fibre reinforced composites. Composites Science and Technology, 38(4), 299-325.
Carlsson, L. A., Gillespie Jr, J. W., & Pipes, R. B. (1986). On the analysis and design of the end notched flexure (ENF) specimen for mode II testing. Journal of composite materials, 20(6), 594-604.
Catalanotti, G., & Xavier, J. (2015). Measurement of the mode II intralaminar fracture toughness and R-curve of polymer composites using a modified Iosipescu specimen and the size effect law. Engineering Fracture Mechanics, 138, 202-214.
Catalanotti, G., Camanho, P. P., Xavier, J., Dávila, C. G., & Marques, A. T. (2010). Measurement of resistance curves in the longitudinal failure of composites using digital image correlation. Composites Science and Technology, 70(13), 1986-1993.
Chang, J., Xu, J. Q., & Mutoh, Y. (2006). A general mixed-mode brittle fracture criterion for cracked materials. Engineering Fracture Mechanics, 73(9), 1249-1263.
Chiang, M. Y., & He, J. (2002). An analytical assessment of using the losipescu shear test for hybrid composites. Composites Part B: Engineering, 33(6), 461-470.
Ciornei, F. C., Alaci, S., Ciceu, S. P., Cerlinca, D. A., & Irimescu, L. (2012). The Effect of Notch Geometry Upon Shear Stress State In A Beam. Mechanical Testing and Diagnosis, 2(2), 68.
Dai, Z., Ren, H., Zhuang, X., & Rabczuk, T. (2017). Dual-support smoothed particle hydrodynamics for elastic mechanics. International Journal of Computational Methods, 14(04), 1750039.
Daiyan, H., Andreassen, E., Grytten, F., Osnes, H., & Gaarder, R. H. (2012). Shear testing of polypropylene materials analysed by digital image correlation and numerical simulations. Experimental Mechanics, 52(9), 1355-1369.
Davidson, B. D., Krüger, R., & König, M. (1995). Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens. Composites Science and Technology, 54(4), 385-394.
De Moura, M. F. S. F., Morais, J. J. L., & Dourado, N. (2008). A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Engineering Fracture Mechanics, 75(13), 3852-3865.
Dhatt, G., Lefrançois, E., & Touzot, G. (2012). Finite element method. John Wiley & Sons.
Fakhri, M., Amoosoltani, E., & Aliha, M. R. M. (2017). Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber. Engineering Fracture Mechanics, 180, 43-59.
Fakoor, M., & Khansari, N. M. (2016). Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Engineering Fracture Mechanics, 153, 407-420.
Fakoor, M., & Khansari, N. M. (2018). A New Approach for Investigation of Mode II Fracture Toughness in Orthotropic Materials. Latin American Journal of Solids and Structures, 15(3).
Fakoor, M., & Khansari, N. M. (2018). General mixed mode I/II failure criterion for composite materials based on matrix fracture properties. Theoretical and Applied Fracture Mechanics, 96, 428-442.
Gómez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2009). Fracture of V-notched specimens under mixed mode (I+ II) loading in brittle materials. International journal of fracture, 159(2), 121.
Gourlay, A. R., & Griffiths, D. F. (1980). The Finite Difference Method in Partial Differential Equations.
Hall, W. S. (1994). Boundary element method. In The Boundary Element Method (pp. 61-83). Springer, Dordrecht.
Heidari-Rarani, M., Aliha, M. R. M., Shokrieh, M. M., & Ayatollahi, M. R. (2014). Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings–An experimental study. Construction and Building Materials, 64, 308-315.
Ho, H. (1991). An evaluation of the Iosipescu specimen for composite materials shear property measurement (Doctoral dissertation, Virginia Tech).
Ho, H., Budiman, H. T., Tsai, M. Y., Morton, J., & Farley, G. L. (1993a). Composite material shear property measurement using the Iosipescu specimen. In Eleventh Volume: Composite Materials—Testing and Design. ASTM International.
Ho, H., Tsai, M. Y., Morton, J., & Farley, G. L. (1993). Numerical analysis of the Iosipescu specimen for composite materials. Composites science and technology, 46(2), 115-128.
Huang, H. C., & Usmani, A. S. (2012). Finite element analysis for heat transfer: theory and software. Springer Science & Business Media.
Hufenbach, W., Langkamp, A., Hornig, A., Zscheyge, M., & Bochynek, R. (2011). Analysing and modelling the 3D shear damage behaviour of hybrid yarn textile-reinforced thermoplastic composites. Composite Structures, 94(1), 121-131.
Hunt, D. G., & Croager, W. P. (1982). Mode II fracture toughness of wood measured by a mixed-mode test method. Journal of materials science letters, 1(2), 77-79.
Iosipescu, N. (1967). New accurate procedure for single shear testing of metals. J Mater, 2, 537-566.
Khansari, N. M., Fakoor, M., & Berto, F. (2019). Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials. Theoretical and Applied Fracture Mechanics, 99, 177-193.
Lee, S., & Munro, M. (1986). Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Composites, 17(1), 13-22.
Lekhnitskij, S. (1977). Theory of the elasticity of anisotropic bodies.
Leknitskii, S. G. (1963). Theory of elasticity of an anisotropic elastic body. Holden-Day.
Lim, I. L., Johnston, I. W., Choi, S. K., & Boland, J. N. (1994, June). Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—mixed-mode. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 31, No. 3, pp. 199-212). Pergamon.
Liu, J. Y. (2000). Shear test fixture design for orthotropic materials. In Seventh International Conference on Composites Engineering, July 2-8, 2000, Denver, Colorado.[New Orleans?: International Community for Composites Engineering?; University of New Orleans, College of Engineering?, 2000].: p. 553-554: ill..
Maccagno, T. M., & Knott, J. F. (1989). The fracture behaviour of PMMA in mixed modes I and II. Engineering Fracture Mechanics, 34(1), 65-86.
Mall, S., & Mol, J. H. (1991). Mode II fracture toughness testing of a fiber-reinforced ceramic composite. Engineering fracture mechanics, 38(1), 55-69.
Manalo, A. C., Aravinthan, T., & Karunasena, W. (2010). In-plane shear behaviour of fibre composite sandwich beams using asymmetrical beam shear test. Construction and Building Materials, 24(10), 1952-1960.
Melin, L. N., & Neumeister, J. M. (2006). Measuring constitutive shear behavior of orthotropic composites and evaluation of the modified Iosipescu test. Composite structures, 76(1-2), 106-115.
Melin, N. (2008). The modified Iosipescu shear test for orthotropic materials, KTH.
Melin, N. (2008). The modified Iosipescu shear test for orthotropic materials (Doctoral dissertation, KTH).
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering fracture mechanics, 119, 124-131.
Mirsayar, M. M., Razmi, A., Aliha, M. R. M., & Berto, F. (2018). EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Engineering Fracture Mechanics, 190, 186-197.
Murphy, J. F. (1979). Strength of Wood Beams with End Splits (No. FSRP-FPL-347). FOREST PRODUCTS LAB MADISON WI.
Murphy, J. F. (1988). Mode II wood test specimen: beam with center slit. Journal of testing and evaluation, 16(4), 364-368.
Negru, R., Marsavina, L., Filipescu, H., & Pasca, N. (2013). Investigation of mixed mode I/II brittle fracture using ASCB specimen. International Journal of Fracture, 181(1), 155-161.
Nguyen, B. H., Tran, H. D., Anitescu, C., Zhuang, X., & Rabczuk, T. (2016). An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 306, 252-275.
Nguyen, V. P., Rabczuk, T., Bordas, S., & Duflot, M. (2008). Meshless methods: a review and computer implementation aspects. Mathematics and computers in simulation, 79(3), 763-813.
Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., & Bordas, S. P. (2008). A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering, 198(2), 165-177.
Nguyen-Xuan, H., Rabczuk, T., Bordas, S., & Debongnie, J. F. (2008). A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 197(13-16), 1184-1203.
Osei-Antwi, M., De Castro, J., Vassilopoulos, A. P., & Keller, T. (2013). Shear mechanical characterization of balsa wood as core material of composite sandwich panels. Construction and Building Materials, 41, 231-238.
Pierron, F., & Vautrin, A. (1998). Measurement of the in-plane shear strengths of unidirectional composites with the Iosipescu test. Composites Science and technology, 57(12), 1653-1660.
Properties, A. S. D. o. M. (1996). Standard test method for tensile properties of plastics, American Society for Testing and Materials.
Rabczuk, T., & Belytschko, T. (2005). Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 63(11), 1559-1582.
Rabczuk, T., Bezensek, B., & Bordas, S. (2008, January). Application of extended element-free Galerkin method to multiple flaws under brittle fracture conditions. In ASME 2008 Pressure Vessels and Piping Conference (pp. 1079-1084). American Society of Mechanical Engineers.
Rabczuk, T., et al. (2008). "Application of Extended Element-Free Galerkin Method to Multiple Flaws Under Brittle Fracture Conditions." (48296): 1079-1084.
Rao, Q., Sun, Z., Stephansson, O., Li, C., & Stillborg, B. (2003). Shear fracture (Mode II) of brittle rock. International Journal of Rock Mechanics and Mining Sciences, 40(3), 355-375.
Razavi, S. M. J., Aliha, M. R. M., & Berto, F. (2018). Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoretical and Applied Fracture Mechanics, 97, 419-425.
Reiterer, A., Lichtenegger, H., Fratzl, P., & Stanzl-Tschegg, S. E. (2001). Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. Journal of materials science, 36(19), 4681-4686.
Ren, H., Dai, Z., Zhuang, X., & Rabczuk, T. (2016). Dual-support Smoothed Particle Hydrodynamics. arXiv preprint arXiv:1607.08350.
Russel, A. J. (1982). Factors affecting the interlaminar fracture energy of graphite/epoxy laminates. In Proc. 4th Int. Conf. on Composite Materials (pp. 279-286).
Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of fracture, 10(3), 305-321.
Simpson, R. N., Bordas, S. P., Trevelyan, J., & Rabczuk, T. (2012a). A two-dimensional isogeometric boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209, 87-100.
Simpson, R. N., Bordas, S. P., Trevelyan, J., & Rabczuk, T. (2012b). A two-dimensional isogeometric boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209, 87-100.
Standard, A. S. T. M. (1997). Standard test methods for shear properties of composite materials by the v-notched beam method. West Conshohocken (PA): ASTM, 100.
Sun, Y. T., Shi, D. Q., Yang, X. G., Mi, C. H., Feng, J., & Jiang, Y. G. (2013). Stress state analysis of iosipescu shear specimens for aerogel composite with different properties in tension and compression. Procedia Engineering, 67, 517-524.
Suresh, S., Shih, C. F., Morrone, A., & O'Dowd, N. P. (1990). Mixed‐mode fracture toughness of ceramic materials. Journal of the American Ceramic Society, 73(5), 1257-1267.
Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base (Vol. 2). Cincinnati, OH: Atomic Dog Publishing.
Vanderkley, P. S. (1981). Mode I-mode II delamination fractrue toughness of a unidirectional graphite/epoxy composite (Doctoral dissertation, Texas A&M University).
Vasic, S., & Smith, I. (2002). Bridging crack model for fracture of spruce. Engineering fracture mechanics, 69(6), 745-760.
Vu-Bac, N., Nguyen-Xuan, H. B., Chen, L., Bordas, S., Kerfriden, P., Simpson, R. N., ... & Rabczuk, T. (2011). A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis. Computer Modeling in Engineering and Sciences, 73(4), 331.
Walrath, D. E., & Adams, D. F. (1983). The losipescu shear test as applied to composite materials. Experimental mechanics, 23(1), 105-110.
Walrath, D. E., & Adams, D. F. (1984). Verification and application of the Iosipescu shear test method.
Xavier, J. C., Garrido, N. M., Oliveira, M., Morais, J. L., Camanho, P. P., & Pierron, F. (2004). A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait. Composites Part A: Applied Science and Manufacturing, 35(7-8), 827-840.
Yang, S. W., Budarapu, P. R., Mahapatra, D. R., Bordas, S. P., Zi, G., & Rabczuk, T. (2015). A meshless adaptive multiscale method for fracture. Computational Materials Science, 96, 382-395.
Akbardoost, J., & Rastin, A. (2015). Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading. Theoretical and Applied Fracture Mechanics, 76, 75-90.
Afendi, M., Majid, M. A., Daud, R., Rahman, A. A., & Teramoto, T. (2013). Strength prediction and reliability of brittle epoxy adhesively bonded dissimilar joint. International journal of adhesion and adhesives, 45, 21-31.
Aliha, M. R. M., & Ayatollahi, M. R. (2008). On mixed-mode I/II crack growth in dental resin materials. Scripta Materialia, 59(2), 258-261.
Aliha, M. R. M., & Saghafi, H. (2013). The effects of thickness and Poisson’s ratio on 3D mixed-mode fracture. Engineering Fracture Mechanics, 98, 15-28.
Aliha, M. R. M., Ayatollahi, M. R., & Kharazi, B. (2009e). Mode II brittle fracture assessment using ASFPB specimen. International journal of fracture, 159(2), 241.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016). Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens. European Journal of Mechanics-A/Solids, 58, 148-162.
Aliha, M. R. M., Berto, F., Mousavi, A., & Razavi, S. M. J. (2017d). On the applicability of ASED criterion for predicting mixed mode I+ II fracture toughness results of a rock material. Theoretical and Applied Fracture Mechanics, 92, 198-204.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock mechanics and rock engineering, 46(5), 1023-1034.
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017a). The influence of specimen type on tensile fracture toughness of rock materials. Pure and Applied Geophysics, 174(3), 1237-1253.
Aliha, M. R. M., Razmi, A., & Mansourian, A. (2017c). The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials. Engineering Fracture Mechanics, 182, 322-336.
Aliha, M. R. M., Sarbijan, M. J., & Bahmani, A. (2017b). Fracture toughness determination of modified HMA mixtures with two novel disc shape configurations. Construction and Building Materials, 155, 789-799.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M., & Ayatollahi, M. R. (2012). Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 93, 153-167.
Ameri, M., Nowbakht, S., Molayem, M., & Aliha, M. R. M. (2016). Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue & fracture of engineering materials & structures, 39(7), 896-906.
ASTM, E. (2003). 691-99. Standard practice for conducting an interlaboratory study to determine the precision of a test method. Annu. Book of ASTM Stand, 14, 203-224.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), 175-182.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Barnes, J. A., Kumosa, M., & Hull, D. (1987). Theoretical and experimental evaluation of the Iosipescu shear test. Composites science and technology, 28(4), 251-268.
Bathe, K. J. (2007). Finite element method. Wiley encyclopedia of computer science and engineering, 1-12.
Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element‐free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229-256.
Berto, F., Lazzarin, P., & Marangon, C. (2012). Brittle fracture of U-notched graphite plates under mixed mode loading. Materials & Design, 41, 421-432.
Bland, J. M., & Altman, D. G. (1996). Statistics notes: measurement error. Bmj, 312(7047), 1654.
Bocca, P., Carpinteri, A., & Valente, S. (1991). Mixed mode fracture of concrete. International Journal of Solids and Structures, 27(9), 1139-1153.
Boothroyd, G. (2005). Assembly automation and product design. CRC Press.
Bradley, L. R., Bowen, C. R., McEnaney, B., & Johnson, D. C. (2007). Shear properties of a carbon/carbon composite with non-woven felt and continuous fibre reinforcement layers. Carbon, 45(11), 2178-2187.
Brebbia, C. A. (1980). The boundary element method for engineers (No. BOOK). Pentech press.
Broughton, W. R., Kumosa, M., & Hull, D. (1990). Analysis of the Iosipescu shear test as applied to unidirectional carbon-fibre reinforced composites. Composites Science and Technology, 38(4), 299-325.
Carlsson, L. A., Gillespie Jr, J. W., & Pipes, R. B. (1986). On the analysis and design of the end notched flexure (ENF) specimen for mode II testing. Journal of composite materials, 20(6), 594-604.
Catalanotti, G., & Xavier, J. (2015). Measurement of the mode II intralaminar fracture toughness and R-curve of polymer composites using a modified Iosipescu specimen and the size effect law. Engineering Fracture Mechanics, 138, 202-214.
Catalanotti, G., Camanho, P. P., Xavier, J., Dávila, C. G., & Marques, A. T. (2010). Measurement of resistance curves in the longitudinal failure of composites using digital image correlation. Composites Science and Technology, 70(13), 1986-1993.
Chang, J., Xu, J. Q., & Mutoh, Y. (2006). A general mixed-mode brittle fracture criterion for cracked materials. Engineering Fracture Mechanics, 73(9), 1249-1263.
Chiang, M. Y., & He, J. (2002). An analytical assessment of using the losipescu shear test for hybrid composites. Composites Part B: Engineering, 33(6), 461-470.
Ciornei, F. C., Alaci, S., Ciceu, S. P., Cerlinca, D. A., & Irimescu, L. (2012). The Effect of Notch Geometry Upon Shear Stress State In A Beam. Mechanical Testing and Diagnosis, 2(2), 68.
Dai, Z., Ren, H., Zhuang, X., & Rabczuk, T. (2017). Dual-support smoothed particle hydrodynamics for elastic mechanics. International Journal of Computational Methods, 14(04), 1750039.
Daiyan, H., Andreassen, E., Grytten, F., Osnes, H., & Gaarder, R. H. (2012). Shear testing of polypropylene materials analysed by digital image correlation and numerical simulations. Experimental Mechanics, 52(9), 1355-1369.
Davidson, B. D., Krüger, R., & König, M. (1995). Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens. Composites Science and Technology, 54(4), 385-394.
De Moura, M. F. S. F., Morais, J. J. L., & Dourado, N. (2008). A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test. Engineering Fracture Mechanics, 75(13), 3852-3865.
Dhatt, G., Lefrançois, E., & Touzot, G. (2012). Finite element method. John Wiley & Sons.
Fakhri, M., Amoosoltani, E., & Aliha, M. R. M. (2017). Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber. Engineering Fracture Mechanics, 180, 43-59.
Fakoor, M., & Khansari, N. M. (2016). Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Engineering Fracture Mechanics, 153, 407-420.
Fakoor, M., & Khansari, N. M. (2018). A New Approach for Investigation of Mode II Fracture Toughness in Orthotropic Materials. Latin American Journal of Solids and Structures, 15(3).
Fakoor, M., & Khansari, N. M. (2018). General mixed mode I/II failure criterion for composite materials based on matrix fracture properties. Theoretical and Applied Fracture Mechanics, 96, 428-442.
Gómez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2009). Fracture of V-notched specimens under mixed mode (I+ II) loading in brittle materials. International journal of fracture, 159(2), 121.
Gourlay, A. R., & Griffiths, D. F. (1980). The Finite Difference Method in Partial Differential Equations.
Hall, W. S. (1994). Boundary element method. In The Boundary Element Method (pp. 61-83). Springer, Dordrecht.
Heidari-Rarani, M., Aliha, M. R. M., Shokrieh, M. M., & Ayatollahi, M. R. (2014). Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings–An experimental study. Construction and Building Materials, 64, 308-315.
Ho, H. (1991). An evaluation of the Iosipescu specimen for composite materials shear property measurement (Doctoral dissertation, Virginia Tech).
Ho, H., Budiman, H. T., Tsai, M. Y., Morton, J., & Farley, G. L. (1993a). Composite material shear property measurement using the Iosipescu specimen. In Eleventh Volume: Composite Materials—Testing and Design. ASTM International.
Ho, H., Tsai, M. Y., Morton, J., & Farley, G. L. (1993). Numerical analysis of the Iosipescu specimen for composite materials. Composites science and technology, 46(2), 115-128.
Huang, H. C., & Usmani, A. S. (2012). Finite element analysis for heat transfer: theory and software. Springer Science & Business Media.
Hufenbach, W., Langkamp, A., Hornig, A., Zscheyge, M., & Bochynek, R. (2011). Analysing and modelling the 3D shear damage behaviour of hybrid yarn textile-reinforced thermoplastic composites. Composite Structures, 94(1), 121-131.
Hunt, D. G., & Croager, W. P. (1982). Mode II fracture toughness of wood measured by a mixed-mode test method. Journal of materials science letters, 1(2), 77-79.
Iosipescu, N. (1967). New accurate procedure for single shear testing of metals. J Mater, 2, 537-566.
Khansari, N. M., Fakoor, M., & Berto, F. (2019). Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials. Theoretical and Applied Fracture Mechanics, 99, 177-193.
Lee, S., & Munro, M. (1986). Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Composites, 17(1), 13-22.
Lekhnitskij, S. (1977). Theory of the elasticity of anisotropic bodies.
Leknitskii, S. G. (1963). Theory of elasticity of an anisotropic elastic body. Holden-Day.
Lim, I. L., Johnston, I. W., Choi, S. K., & Boland, J. N. (1994, June). Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—mixed-mode. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 31, No. 3, pp. 199-212). Pergamon.
Liu, J. Y. (2000). Shear test fixture design for orthotropic materials. In Seventh International Conference on Composites Engineering, July 2-8, 2000, Denver, Colorado.[New Orleans?: International Community for Composites Engineering?; University of New Orleans, College of Engineering?, 2000].: p. 553-554: ill..
Maccagno, T. M., & Knott, J. F. (1989). The fracture behaviour of PMMA in mixed modes I and II. Engineering Fracture Mechanics, 34(1), 65-86.
Mall, S., & Mol, J. H. (1991). Mode II fracture toughness testing of a fiber-reinforced ceramic composite. Engineering fracture mechanics, 38(1), 55-69.
Manalo, A. C., Aravinthan, T., & Karunasena, W. (2010). In-plane shear behaviour of fibre composite sandwich beams using asymmetrical beam shear test. Construction and Building Materials, 24(10), 1952-1960.
Melin, L. N., & Neumeister, J. M. (2006). Measuring constitutive shear behavior of orthotropic composites and evaluation of the modified Iosipescu test. Composite structures, 76(1-2), 106-115.
Melin, N. (2008). The modified Iosipescu shear test for orthotropic materials, KTH.
Melin, N. (2008). The modified Iosipescu shear test for orthotropic materials (Doctoral dissertation, KTH).
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering fracture mechanics, 119, 124-131.
Mirsayar, M. M., Razmi, A., Aliha, M. R. M., & Berto, F. (2018). EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials. Engineering Fracture Mechanics, 190, 186-197.
Murphy, J. F. (1979). Strength of Wood Beams with End Splits (No. FSRP-FPL-347). FOREST PRODUCTS LAB MADISON WI.
Murphy, J. F. (1988). Mode II wood test specimen: beam with center slit. Journal of testing and evaluation, 16(4), 364-368.
Negru, R., Marsavina, L., Filipescu, H., & Pasca, N. (2013). Investigation of mixed mode I/II brittle fracture using ASCB specimen. International Journal of Fracture, 181(1), 155-161.
Nguyen, B. H., Tran, H. D., Anitescu, C., Zhuang, X., & Rabczuk, T. (2016). An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 306, 252-275.
Nguyen, V. P., Rabczuk, T., Bordas, S., & Duflot, M. (2008). Meshless methods: a review and computer implementation aspects. Mathematics and computers in simulation, 79(3), 763-813.
Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., & Bordas, S. P. (2008). A smoothed finite element method for shell analysis. Computer Methods in Applied Mechanics and Engineering, 198(2), 165-177.
Nguyen-Xuan, H., Rabczuk, T., Bordas, S., & Debongnie, J. F. (2008). A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 197(13-16), 1184-1203.
Osei-Antwi, M., De Castro, J., Vassilopoulos, A. P., & Keller, T. (2013). Shear mechanical characterization of balsa wood as core material of composite sandwich panels. Construction and Building Materials, 41, 231-238.
Pierron, F., & Vautrin, A. (1998). Measurement of the in-plane shear strengths of unidirectional composites with the Iosipescu test. Composites Science and technology, 57(12), 1653-1660.
Properties, A. S. D. o. M. (1996). Standard test method for tensile properties of plastics, American Society for Testing and Materials.
Rabczuk, T., & Belytschko, T. (2005). Adaptivity for structured meshfree particle methods in 2D and 3D. International Journal for Numerical Methods in Engineering, 63(11), 1559-1582.
Rabczuk, T., Bezensek, B., & Bordas, S. (2008, January). Application of extended element-free Galerkin method to multiple flaws under brittle fracture conditions. In ASME 2008 Pressure Vessels and Piping Conference (pp. 1079-1084). American Society of Mechanical Engineers.
Rabczuk, T., et al. (2008). "Application of Extended Element-Free Galerkin Method to Multiple Flaws Under Brittle Fracture Conditions." (48296): 1079-1084.
Rao, Q., Sun, Z., Stephansson, O., Li, C., & Stillborg, B. (2003). Shear fracture (Mode II) of brittle rock. International Journal of Rock Mechanics and Mining Sciences, 40(3), 355-375.
Razavi, S. M. J., Aliha, M. R. M., & Berto, F. (2018). Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoretical and Applied Fracture Mechanics, 97, 419-425.
Reiterer, A., Lichtenegger, H., Fratzl, P., & Stanzl-Tschegg, S. E. (2001). Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. Journal of materials science, 36(19), 4681-4686.
Ren, H., Dai, Z., Zhuang, X., & Rabczuk, T. (2016). Dual-support Smoothed Particle Hydrodynamics. arXiv preprint arXiv:1607.08350.
Russel, A. J. (1982). Factors affecting the interlaminar fracture energy of graphite/epoxy laminates. In Proc. 4th Int. Conf. on Composite Materials (pp. 279-286).
Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of fracture, 10(3), 305-321.
Simpson, R. N., Bordas, S. P., Trevelyan, J., & Rabczuk, T. (2012a). A two-dimensional isogeometric boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209, 87-100.
Simpson, R. N., Bordas, S. P., Trevelyan, J., & Rabczuk, T. (2012b). A two-dimensional isogeometric boundary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineering, 209, 87-100.
Standard, A. S. T. M. (1997). Standard test methods for shear properties of composite materials by the v-notched beam method. West Conshohocken (PA): ASTM, 100.
Sun, Y. T., Shi, D. Q., Yang, X. G., Mi, C. H., Feng, J., & Jiang, Y. G. (2013). Stress state analysis of iosipescu shear specimens for aerogel composite with different properties in tension and compression. Procedia Engineering, 67, 517-524.
Suresh, S., Shih, C. F., Morrone, A., & O'Dowd, N. P. (1990). Mixed‐mode fracture toughness of ceramic materials. Journal of the American Ceramic Society, 73(5), 1257-1267.
Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base (Vol. 2). Cincinnati, OH: Atomic Dog Publishing.
Vanderkley, P. S. (1981). Mode I-mode II delamination fractrue toughness of a unidirectional graphite/epoxy composite (Doctoral dissertation, Texas A&M University).
Vasic, S., & Smith, I. (2002). Bridging crack model for fracture of spruce. Engineering fracture mechanics, 69(6), 745-760.
Vu-Bac, N., Nguyen-Xuan, H. B., Chen, L., Bordas, S., Kerfriden, P., Simpson, R. N., ... & Rabczuk, T. (2011). A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis. Computer Modeling in Engineering and Sciences, 73(4), 331.
Walrath, D. E., & Adams, D. F. (1983). The losipescu shear test as applied to composite materials. Experimental mechanics, 23(1), 105-110.
Walrath, D. E., & Adams, D. F. (1984). Verification and application of the Iosipescu shear test method.
Xavier, J. C., Garrido, N. M., Oliveira, M., Morais, J. L., Camanho, P. P., & Pierron, F. (2004). A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait. Composites Part A: Applied Science and Manufacturing, 35(7-8), 827-840.
Yang, S. W., Budarapu, P. R., Mahapatra, D. R., Bordas, S. P., Zi, G., & Rabczuk, T. (2015). A meshless adaptive multiscale method for fracture. Computational Materials Science, 96, 382-395.