How to cite this paper
Ri, J & Hong, H. (2019). A method for determination of equivalent limit load surface of fiber-reinforced nonlinear composites.Engineering Solid Mechanics, 7(1), 71-82.
Refrences
Castañeda, P. P. (1991). The effective mechanical properties of nonlinear isotropic composites. Journal of the Mechanics and Physics of Solids, 39(1), 45-71.
Castañeda, P. P. (1996). Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. Journal of the Mechanics and Physics of Solids, 44(6), 827-862.
Castañeda, P. P. (2002a). Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory. Journal of the Mechanics and Physics of Solids, 50(4), 737-757.
Castañeda, P. P. (2002b). Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II—applications. Journal of the Mechanics and Physics of Solids, 50(4), 759-782.
Castañeda, P. P., Telega, J. J., & Gambin, B. (Eds.). (2006). Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials: Proceedings of the NATO Advanced Research Workshop, held in Warsaw, Poland, 23-26 June 2003 (Vol. 170). Springer Science & Business Media.
Chen, H. F., & Ponter, A. R. (2001). Shakedown and limit analyses for 3-D structures using the linear matching method. International Journal of Pressure Vessels and Piping, 78(6), 443-451.
Chen, M., & Hachemi, A. (2014). Progress in Plastic Design of Composites, in: Spiliopoulos, K., Weichert, D. (Eds), Direct Methods for Limit States in Structures and Materials. Springer, Dordrecht, pp 119-138.
Chen, M., Hachemi, A., & Weichert, D. (2010). A non‐conforming finite element for limit analysis of periodic composites. PAMM, 10(1), 405-406.
Chen, H. (2010a). Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. Journal of Pressure Vessel Technology, 132(1), 011202.
Chen, H. (2010b). Linear matching method for design limits in plasticity. Computers, Materials and Continua-Tech Science Press, 20(2), 159-183.
Chen, M., Hachemi, A., & Weichert, D. (2013). Shakedown and optimization analysis of periodic composites. In Limit State of Materials and Structures (pp. 45-69). Springer, Dordrecht.
Cho, N. K., & Chen, H. (2018). Shakedown, ratchet, and limit analyses of 90° back-to-back pipe bends under cyclic in-plane opening bending and steady internal pressure. European Journal of Mechanics-A/Solids, 67, 231-242.
Fritzen, F., & Böhlke, T. (2010). Three‐dimensional finite element implementation of the nonuniform transformation field analysis. International Journal for Numerical Methods in Engineering, 84(7), 803-829.
Galvanetto, U., & Aliabadi, M. H. (2010). Multiscale modeling in solid mechanics: computational approaches (Vol. 3). World Scientific.
Lahellec, N., & Suquet, P. (2007). On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. Journal of the Mechanics and Physics of Solids, 55(9), 1932-1963.
Michel, J. C., Moulinec, H., & Suquet, P. (1999). Effective properties of composite materials with periodic microstructure: a computational approach. Computer methods in applied mechanics and engineering, 172(1-4), 109-143.
Michel, J. C., & Suquet, P. (2003). Nonuniform transformation field analysis. International journal of solids and structures, 40(25), 6937-6955.
Michel, J. C., & Suquet, P. (2004). Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer methods in applied mechanics and engineering, 193(48-51), 5477-5502.
Moulinec, H., & Suquet, P. (1998). A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer methods in applied mechanics and engineering, 157(1-2), 69-94.
Moulinec, H., & Suquet, P. (2003). Intraphase strain heterogeneity in nonlinear composites: a computational approach. European Journal of Mechanics-A/Solids, 22(5), 751-770.
Pisano, A. A., & Fuschi, P. (2007). A numerical approach for limit analysis of orthotropic composite laminates. International journal for numerical methods in engineering, 70(1), 71-93.
Pisano, A. A., & Fuschi, P. (2011). Mechanically fastened joints in composite laminates: Evaluation of load bearing capacity. Composites Part B: Engineering, 42(4), 949-961.
Pisano, A. A., Fuschi, P., & De Domenico, D. (2013). Peak load prediction of multi-pin joints FRP laminates by limit analysis. Composite Structures, 96, 763-772.
Ponter, A. R. S., & Carter, K. F. (1997). Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus. Computer Methods in Applied Mechanics and Engineering, 140(3-4), 237-258.
Ponter, A. R., Fuschi, P., & Engelhardt, M. (2000). Limit analysis for a general class of yield conditions. European Journal of Mechanics-A/Solids, 19(3), 401-421.
Qin, Q. H., & Yang, Q. S. (2008). Macro-micro theory on multi-field coupling behavior of heterogeneous materials. Springer,.
Ri, J. H., & Hong, H. S. (2017). A modified algorithm of linear matching method for limit analysis. Archive of Applied Mechanics, 87(8), 1399-1410.
Castañeda, P. P. (1996). Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. Journal of the Mechanics and Physics of Solids, 44(6), 827-862.
Castañeda, P. P. (2002a). Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory. Journal of the Mechanics and Physics of Solids, 50(4), 737-757.
Castañeda, P. P. (2002b). Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II—applications. Journal of the Mechanics and Physics of Solids, 50(4), 759-782.
Castañeda, P. P., Telega, J. J., & Gambin, B. (Eds.). (2006). Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials: Proceedings of the NATO Advanced Research Workshop, held in Warsaw, Poland, 23-26 June 2003 (Vol. 170). Springer Science & Business Media.
Chen, H. F., & Ponter, A. R. (2001). Shakedown and limit analyses for 3-D structures using the linear matching method. International Journal of Pressure Vessels and Piping, 78(6), 443-451.
Chen, M., & Hachemi, A. (2014). Progress in Plastic Design of Composites, in: Spiliopoulos, K., Weichert, D. (Eds), Direct Methods for Limit States in Structures and Materials. Springer, Dordrecht, pp 119-138.
Chen, M., Hachemi, A., & Weichert, D. (2010). A non‐conforming finite element for limit analysis of periodic composites. PAMM, 10(1), 405-406.
Chen, H. (2010a). Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. Journal of Pressure Vessel Technology, 132(1), 011202.
Chen, H. (2010b). Linear matching method for design limits in plasticity. Computers, Materials and Continua-Tech Science Press, 20(2), 159-183.
Chen, M., Hachemi, A., & Weichert, D. (2013). Shakedown and optimization analysis of periodic composites. In Limit State of Materials and Structures (pp. 45-69). Springer, Dordrecht.
Cho, N. K., & Chen, H. (2018). Shakedown, ratchet, and limit analyses of 90° back-to-back pipe bends under cyclic in-plane opening bending and steady internal pressure. European Journal of Mechanics-A/Solids, 67, 231-242.
Fritzen, F., & Böhlke, T. (2010). Three‐dimensional finite element implementation of the nonuniform transformation field analysis. International Journal for Numerical Methods in Engineering, 84(7), 803-829.
Galvanetto, U., & Aliabadi, M. H. (2010). Multiscale modeling in solid mechanics: computational approaches (Vol. 3). World Scientific.
Lahellec, N., & Suquet, P. (2007). On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. Journal of the Mechanics and Physics of Solids, 55(9), 1932-1963.
Michel, J. C., Moulinec, H., & Suquet, P. (1999). Effective properties of composite materials with periodic microstructure: a computational approach. Computer methods in applied mechanics and engineering, 172(1-4), 109-143.
Michel, J. C., & Suquet, P. (2003). Nonuniform transformation field analysis. International journal of solids and structures, 40(25), 6937-6955.
Michel, J. C., & Suquet, P. (2004). Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer methods in applied mechanics and engineering, 193(48-51), 5477-5502.
Moulinec, H., & Suquet, P. (1998). A numerical method for computing the overall response of nonlinear composites with complex microstructure. Computer methods in applied mechanics and engineering, 157(1-2), 69-94.
Moulinec, H., & Suquet, P. (2003). Intraphase strain heterogeneity in nonlinear composites: a computational approach. European Journal of Mechanics-A/Solids, 22(5), 751-770.
Pisano, A. A., & Fuschi, P. (2007). A numerical approach for limit analysis of orthotropic composite laminates. International journal for numerical methods in engineering, 70(1), 71-93.
Pisano, A. A., & Fuschi, P. (2011). Mechanically fastened joints in composite laminates: Evaluation of load bearing capacity. Composites Part B: Engineering, 42(4), 949-961.
Pisano, A. A., Fuschi, P., & De Domenico, D. (2013). Peak load prediction of multi-pin joints FRP laminates by limit analysis. Composite Structures, 96, 763-772.
Ponter, A. R. S., & Carter, K. F. (1997). Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus. Computer Methods in Applied Mechanics and Engineering, 140(3-4), 237-258.
Ponter, A. R., Fuschi, P., & Engelhardt, M. (2000). Limit analysis for a general class of yield conditions. European Journal of Mechanics-A/Solids, 19(3), 401-421.
Qin, Q. H., & Yang, Q. S. (2008). Macro-micro theory on multi-field coupling behavior of heterogeneous materials. Springer,.
Ri, J. H., & Hong, H. S. (2017). A modified algorithm of linear matching method for limit analysis. Archive of Applied Mechanics, 87(8), 1399-1410.