How to cite this paper
Sharafi, P., Nemati, S., Samali, B., Bahmani, A., Khakpour, S & Aliabadizadeh, Y. (2018). Flexural and shear performance of an innovative foam-filled sandwich panel with 3-D high density polyethylene skins.Engineering Solid Mechanics, 6(2), 113-128.
Refrences
Allen, H. G. (2013). Analysis and design of structural sandwich panels: the commonwealth and international library: structures and solid body mechanics division. Elsevier.
Aliha, M. R. M., Linul, E., Bahmani, A., & Marsavina, L. (2018). Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+ III loading. Polymer Testing, 67,75-83.
ASTM, D., 1621-00. Standard Test Method for Compressive Properties of Rigid Cellular Plastics.
ASTM-C393/C393M, Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. 2011.
ASTM-D6693, Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes, in ASTM International. 2015: West Conshohocken, PA.
ASTM-D7249/D7249M, Standard Test Method for Facing Properties of Sandwich Constructions by Long Beam Flexure. 2017.
ASTM-D7250/D7250M, Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness. 2011.
ASTM-E1730, Standard Specification for Rigid Foam for Use in Structural Sandwich Panel Core, in ASTM International. 2015: West Conshohocken, PA.
Carlsson, L. A., & Kardomateas, G. A. (2011). Structural and failure mechanics of sandwich composites (Vol. 121). Springer Science & Business Media.
Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., & Reis, L. G. (2012). GFRP sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications: effects of introducing strengthening ribs. International Journal of Structural Integrity, 3(2), 127-147.
Dawood, M., Taylor, E., & Rizkalla, S. (2010). Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions. Composite Structures, 92(4), 950-963.
Fam, A., & Sharaf, T. (2010). Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations. Composite Structures, 92(12), 2927-2935.
Garrido, M., Correia, J. R., & Keller, T. (2016). Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction and Building Materials, 118, 235-244.
Hayes, M. D. (2003). Structural analysis of a pultruded composite beam: shear stiffness determination and strength and fatigue life predictions (Doctoral dissertation, Virginia Tech).
Kumar, M. V., & Soragaon, B. (2014). Fabrication and evaluation of multilayered polyurethane foam core sandwich panels for static flexural stiffness. Procedia Engineering, 97, 1227-1236.
Lv, L., Huang, Y., Cui, J., Qian, Y., Ye, F., & Zhao, Y. (2017). Bending properties of three-dimensional honeycomb sandwich structure composites: experiment and Finite Element Method simulation. Textile Research Journal, 0040517517703602.
Manalo, A. (2013). Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and Magnesium Oxide board. Construction and Building Materials, 41, 642-653.
Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T., Apostol, D. A., & Sadowski, T. (2014). Evaluation of mixed mode fracture for PUR foams. Procedia Materials Science, 3, 1342-1352.
Marsavina, L., Linul, E., Voiconi, T., & Sadowski, T. (2013). A comparison between dynamic and static fracture toughness of polyurethane foams. Polymer Testing, 32(4), 673-680.
Mostafa, A. (2015). Numerical analysis on the effect of shear keys pitch on the shear performance of foamed sandwich panels. Engineering Structures, 101, 216-232.
Mostafa, A., Shankar, K., & Morozov, E. V. (2015). Behaviour of PU-foam/glass-fibre composite sandwich panels under flexural static load. Materials and Structures, 48(5), 1545-1559.
Mostafa, A., Shankar, K., & Morozov, E. V. (2015). Independent analytical technique for analysis of the flexural behaviour of the composite sandwich panels incorporated with shear keys concept. Materials and Structures, 48(8), 2455-2474.
Potluri, P. A., Kusak, E., & Reddy, T. Y. (2003). Novel stitch-bonded sandwich composite structures. Composite Structures, 59(2), 251-259.
Reis, E. M., & Rizkalla, S. H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Building Materials, 22(6), 1009-1018.
Sharaf, T. (2010). Flexural behaviour of sandwich panels Composed of polyurethane core and GFRP skins and ribs(Doctoral dissertation).
Sharaf, T., & Fam, A. (2010). Experimental investigation of large-scale cladding sandwich panels under out-of-plane transverse loading for building applications. Journal of Composites for Construction, 15(3), 422-430.
Sharaf, T., & Fam, A. (2012). Numerical modelling of sandwich panels with soft core and different rib configurations. Journal of Reinforced Plastics and Composites, 31(11), 771-784.
Sharaf, T., Shawkat, W., & Fam, A. (2010). Structural performance of sandwich wall panels with different foam core densities in one-way bending. Journal of Composite Materials, 44(19), 2249-2263.
Sharafi, P., Hadi, M.N., The, L. (2014b). Geometric design optimization for dynamic response problems of continuous reinforced concrete beams. Journal of Computing in Civil Engineering, 28(2), 202-209.
Sharafi, P., Hadi, M., & Teh, L. (2012a). Optimum Spans’ Lengths of Multi-span Reinforced Concrete Beams Under Dynamic Loading. In: Caicedo J., Catbas F., Cunha A., Racic V., Reynolds P., Salyards K. (eds) Topics on the Dynamics of Civil Structures, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY.
Sharafi, P., Hadi, M., & Teh, L. (2012b), Optimum column layout design of reinforced concrete frames under wind loading. In: Caicedo J., Catbas F., Cunha A., Racic V., Reynolds
Sharafi, P., Samali, B., & Godrat, M. (2017a). Automated Spatial Design of Multi-Story Modular Buildings Using a Unified Matrix Approach. Automation in Construction, 82, 31-42.
Sharafi, P., Samali, B., Mortazavi, M., & Ronagh, H. (2017b). Interlocking system for enhancing the integrity of multi-story modular buildings. Automation in Construction, 85, 263-272.
Sharafi, P., Teh, L., & Hadi, M. (2014a). Shape optimization of thin-walled steel sections using graph theory and ACO algorithm. Journal of Constructional Steel Research, 101, 331 - 341.
Sharafi, P., Teh, L., & Hadi, M. (2015). Conceptual design optimization of rectilinear building frames: a knapsack problem approach. Engineering Optimization, 47(10), 1303 – 1323.
Thomsen, O. T., Bozhevolnaya, E., & Lyckegaard, A. (Eds.). (2006). Sandwich Structures 7: Advancing with Sandwich Structures and Materials: Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark, 29-31 August 2005. Springer Science & Business Media.
Tuwair, H., Hopkins, M., Volz, J., ElGawady, M. A., Mohamed, M., Chandrashekhara, K., & Birman, V. (2015). Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Composites Part B: Engineering, 79, 262-276.
Wang, L., Liu, W., Wan, L., Fang, H., & Hui, D. (2014). Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling. Composites part b: engineering, 67, 270-279.
Aliha, M. R. M., Linul, E., Bahmani, A., & Marsavina, L. (2018). Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+ III loading. Polymer Testing, 67,75-83.
ASTM, D., 1621-00. Standard Test Method for Compressive Properties of Rigid Cellular Plastics.
ASTM-C393/C393M, Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. 2011.
ASTM-D6693, Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes, in ASTM International. 2015: West Conshohocken, PA.
ASTM-D7249/D7249M, Standard Test Method for Facing Properties of Sandwich Constructions by Long Beam Flexure. 2017.
ASTM-D7250/D7250M, Standard Practice for Determining Sandwich Beam Flexural and Shear Stiffness. 2011.
ASTM-E1730, Standard Specification for Rigid Foam for Use in Structural Sandwich Panel Core, in ASTM International. 2015: West Conshohocken, PA.
Carlsson, L. A., & Kardomateas, G. A. (2011). Structural and failure mechanics of sandwich composites (Vol. 121). Springer Science & Business Media.
Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., & Reis, L. G. (2012). GFRP sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications: effects of introducing strengthening ribs. International Journal of Structural Integrity, 3(2), 127-147.
Dawood, M., Taylor, E., & Rizkalla, S. (2010). Two-way bending behavior of 3-D GFRP sandwich panels with through-thickness fiber insertions. Composite Structures, 92(4), 950-963.
Fam, A., & Sharaf, T. (2010). Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations. Composite Structures, 92(12), 2927-2935.
Garrido, M., Correia, J. R., & Keller, T. (2016). Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction and Building Materials, 118, 235-244.
Hayes, M. D. (2003). Structural analysis of a pultruded composite beam: shear stiffness determination and strength and fatigue life predictions (Doctoral dissertation, Virginia Tech).
Kumar, M. V., & Soragaon, B. (2014). Fabrication and evaluation of multilayered polyurethane foam core sandwich panels for static flexural stiffness. Procedia Engineering, 97, 1227-1236.
Lv, L., Huang, Y., Cui, J., Qian, Y., Ye, F., & Zhao, Y. (2017). Bending properties of three-dimensional honeycomb sandwich structure composites: experiment and Finite Element Method simulation. Textile Research Journal, 0040517517703602.
Manalo, A. (2013). Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and Magnesium Oxide board. Construction and Building Materials, 41, 642-653.
Marsavina, L., Constantinescu, D. M., Linul, E., Voiconi, T., Apostol, D. A., & Sadowski, T. (2014). Evaluation of mixed mode fracture for PUR foams. Procedia Materials Science, 3, 1342-1352.
Marsavina, L., Linul, E., Voiconi, T., & Sadowski, T. (2013). A comparison between dynamic and static fracture toughness of polyurethane foams. Polymer Testing, 32(4), 673-680.
Mostafa, A. (2015). Numerical analysis on the effect of shear keys pitch on the shear performance of foamed sandwich panels. Engineering Structures, 101, 216-232.
Mostafa, A., Shankar, K., & Morozov, E. V. (2015). Behaviour of PU-foam/glass-fibre composite sandwich panels under flexural static load. Materials and Structures, 48(5), 1545-1559.
Mostafa, A., Shankar, K., & Morozov, E. V. (2015). Independent analytical technique for analysis of the flexural behaviour of the composite sandwich panels incorporated with shear keys concept. Materials and Structures, 48(8), 2455-2474.
Potluri, P. A., Kusak, E., & Reddy, T. Y. (2003). Novel stitch-bonded sandwich composite structures. Composite Structures, 59(2), 251-259.
Reis, E. M., & Rizkalla, S. H. (2008). Material characteristics of 3-D FRP sandwich panels. Construction and Building Materials, 22(6), 1009-1018.
Sharaf, T. (2010). Flexural behaviour of sandwich panels Composed of polyurethane core and GFRP skins and ribs(Doctoral dissertation).
Sharaf, T., & Fam, A. (2010). Experimental investigation of large-scale cladding sandwich panels under out-of-plane transverse loading for building applications. Journal of Composites for Construction, 15(3), 422-430.
Sharaf, T., & Fam, A. (2012). Numerical modelling of sandwich panels with soft core and different rib configurations. Journal of Reinforced Plastics and Composites, 31(11), 771-784.
Sharaf, T., Shawkat, W., & Fam, A. (2010). Structural performance of sandwich wall panels with different foam core densities in one-way bending. Journal of Composite Materials, 44(19), 2249-2263.
Sharafi, P., Hadi, M.N., The, L. (2014b). Geometric design optimization for dynamic response problems of continuous reinforced concrete beams. Journal of Computing in Civil Engineering, 28(2), 202-209.
Sharafi, P., Hadi, M., & Teh, L. (2012a). Optimum Spans’ Lengths of Multi-span Reinforced Concrete Beams Under Dynamic Loading. In: Caicedo J., Catbas F., Cunha A., Racic V., Reynolds P., Salyards K. (eds) Topics on the Dynamics of Civil Structures, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY.
Sharafi, P., Hadi, M., & Teh, L. (2012b), Optimum column layout design of reinforced concrete frames under wind loading. In: Caicedo J., Catbas F., Cunha A., Racic V., Reynolds
Sharafi, P., Samali, B., & Godrat, M. (2017a). Automated Spatial Design of Multi-Story Modular Buildings Using a Unified Matrix Approach. Automation in Construction, 82, 31-42.
Sharafi, P., Samali, B., Mortazavi, M., & Ronagh, H. (2017b). Interlocking system for enhancing the integrity of multi-story modular buildings. Automation in Construction, 85, 263-272.
Sharafi, P., Teh, L., & Hadi, M. (2014a). Shape optimization of thin-walled steel sections using graph theory and ACO algorithm. Journal of Constructional Steel Research, 101, 331 - 341.
Sharafi, P., Teh, L., & Hadi, M. (2015). Conceptual design optimization of rectilinear building frames: a knapsack problem approach. Engineering Optimization, 47(10), 1303 – 1323.
Thomsen, O. T., Bozhevolnaya, E., & Lyckegaard, A. (Eds.). (2006). Sandwich Structures 7: Advancing with Sandwich Structures and Materials: Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark, 29-31 August 2005. Springer Science & Business Media.
Tuwair, H., Hopkins, M., Volz, J., ElGawady, M. A., Mohamed, M., Chandrashekhara, K., & Birman, V. (2015). Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Composites Part B: Engineering, 79, 262-276.
Wang, L., Liu, W., Wan, L., Fang, H., & Hui, D. (2014). Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling. Composites part b: engineering, 67, 270-279.