How to cite this paper
Mirsayar, M & Zollinger, D. (2018). Factors influencing stresses and movements in continuously reinforced concrete pavements – A review.Engineering Solid Mechanics, 6(1), 67-82.
Refrences
ACI Committee. 517. (1980). Accelerated curing of concrete at atmospheric pressure – State of the art. ACI Materials Journal, 6, 429-48.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Aliha, M. R. M., & Fattahi Amirdehi, H. R. (2017). Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents. Fatigue & Fracture of Engineering Materials & Structures, 40(1), 55-68.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016). A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures, 90, 167-177.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023-1034.
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017). The influence of specimen type on tensile fracture toughness of rock materials. Pure and Applied Geophysics, 174(3), 1237-1253.
Aliha, M. R. M., Pakzad, R., & Ayatollahi, M. R. (2013). Numerical analyses of a cracked straight-through flattened Brazilian disk specimen under mixed-mode loading. Journal of Engineering Mechanics, 140(1), 219-224.
Álvarez, D., Blackman, B. R. K., Guild, F. J., & Kinloch, A. J. (2014). Mode I fracture in adhesively-bonded joints: A mesh-size independent modelling approach using cohesive elements. Engineering Fracture Mechanics, 115, 73-95.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M., & Ayatollahi, M. R. (2012). Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 93, 153-167.
Ameri, M., Nowbakht, S., Molayem, M., & Aliha, M. R. M. (2016). Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue & Fracture of Engineering Materials & Structures, 39(7), 896-906.
American Association of State Highway, & Transportation Officials. (1993). AASHTO Guide for Design of Pavement Structures, 1993 (Vol. 1). AASHTO.
Arabi, H., Mirsayar, M. M., Samaei, A. T., & Darandeh, M. (2013). Study of characteristic equation of the elastic stress field near bimaterial notches. Strength of Materials, 45(5), 598-606.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631-4641.
Ayatollahi, M. R., & Aliha, M. R. M. (2009a). Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. International Journal of Solids and Structures, 46(2), 311-321.
Ayatollahi, M. R., & Aliha, M. R. M. (2009b). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). On the use of an anti‐symmetric four‐point bend specimen for mode II fracture experiments. Fatigue & Fracture of Engineering Materials & Structures, 34(11), 898-907.
Ayatollahi, M. R., & Mirsayar, M. M. (2011). Kinking angles for interface cracks. Procedia Engineering, 10, 325-329.
Ayatollahi, M. R., Dehghany, M., & Mirsayar, M. M. (2013). A comprehensive photoelastic study for mode I sharp V-notches. European Journal of Mechanics-A/Solids, 37, 216-230.
Ayatollahi, M. R., Mirsayar, M. M., & Dehghany, M. (2011). Experimental determination of stress field parameters in bi-material notches using photoelasticity. Materials & Design, 32(10), 4901-4908.
Ayatollahi, M. R., Mirsayar, M. M., & Nejati, M. (2010a). Evaluation of first non-singular stress term in bi-material notches. Computational Materials Science, 50(2), 752-760.
Ayatollahi, M. R., Nejati, M., & Mirsayar, M. M. (2010b). An overdeterministic method for stress analysis of bi-material corners and interface cracks using finite element method. In Proceedings of the 9th Conference of Iranian Aerospace Society, Tehran, Iran.
Bahmani, A., Aliha, M. R. M., & Berto, F. (2017). Investigation of fracture toughness for a polycrystalline graphite under combined tensile-tear deformation. Theoretical and Applied Fracture Mechanics. To appear.
Bari, M. E., & Zollinger, D. G. (2016). New concepts for the assessment of concrete slab interfacial effects in pavement design and analysis. International Journal of Pavement Engineering, 17(3), 233-244.
Bažant, Z. P., & Najjar, L. J. (1971). Drying of concrete as a nonlinear diffusion problem. Cement and Concrete Research, 1(5), 461-473.
Bissonnette, B., Attiogbe, E. K., Miltenberger, M. A., & Fortin, C. (2007). Drying shrinkage, curling, and joint opening of slabs-on-ground. ACI Materials Journal, 104(3), 259-267.
Brühwiler, E., & Wittmann, F. H. (1990). The wedge splitting test, a new method of performing stable fracture mechanics tests. Engineering Fracture Mechanics, 35(1-3), 117-125.
Byfors, J. (1980), Plain concrete at early-ages. Sweden: Swedish Cement and Concrete Research Institute. Report # FO 3:8.
Campilho, R. D. S. G., Banea, M. D., Chaves, F. J. P., & Da Silva, L. F. M. (2011). eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I. Computational Materials Science, 50(4), 1543-1549.
Cha, S. W. (1999). Modeling of hydration process and analysis of thermal and hygral stresses in hardening concrete. Seoul National University, Seoul, Korea.
Chabot, A., Hun, M., & Hammoum, F. (2013). Mechanical analysis of a mixed mode debonding test for “composite” pavements. Construction and Building Materials, 40, 1076-1087.
Choupani, N. (2008). Mixed-mode cohesive fracture of adhesive joints: Experimental and numerical studies. Engineering Fracture Mechanics, 75(15), 4363-4382.
Dai, F., Wei, M. D., Xu, N. W., Ma, Y., & Yang, D. S. (2015). Numerical assessment of the progressive rock fracture mechanism of cracked chevron notched Brazilian disc specimens. Rock Mechanics and Rock Engineering, 48(2), 463-479.
Dehghany, M., Saeidi Googarchin, H., & Aliha, M. R. M. (2017). The role of first non‐singular stress terms in mixed mode brittle fracture of V‐notched components: an experimental study. Fatigue & Fracture of Engineering Materials & Structures, 40(4), 623-641.
Delcourt, C., & Jasenski, A. (1994). First application of a concrete overlay on a bitumen-paved motorway in Belgium. In the Proceedings of the 7th International Symposium on Concrete Roads, 2(3), 15-20.
Emborg, M. (1989). Thermal stresses in concrete structures at early ages (Doctoral dissertation, Luleå tekniska universitet).
Evans, A. G., Rühle, M., Dalgleish, B. J., & Charalambides, P. G. (1990). The fracture energy of bimaterial interfaces. Materials Science and Engineering: A, 126(1-2), 53-64.
Fakhri, M., Amoosoltani, E., & Aliha, M. R. M. (2017). Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber. Engineering Fracture Mechanics, 180, 43-59.
Fernlund, G., & Spelt, J. K. (1994). Mixed-mode fracture characterization of adhesive joints. Composites Science and Technology, 50(4), 441-449.
Fernlund, G., Papini, M., McCammond, D., & Spelt, J. K. (1994). Fracture load predictions for adhesive joints. Composites Science and Technology, 51(4), 587-600.
Funatsu, T., Kuruppu, M., & Matsui, K. (2014). Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. International Journal of Rock Mechanics and Mining Sciences, 67, 1-8.
He, M. Y., & Hutchinson, J. W. (1989). Kinking of a crack out of an interface. Journal of Applied Mechanics, 56(2), 270-278.
Highway Research Board. Continuously Reinforced Concrete Pavement (1973). National Cooperative Highway Research Program Synthesis of Highway Practice 16, Washington D.C.
Hurd, D. S., Caretta, R., & Gerberich, W. W. (1995). An experimental fracture mechanics study of a strong interface: The silicon/glass anodic bond. Journal of Materials Research, 10(2), 387-400.
Issa, M. A., Issa, M. A., Islam, M. S., & Chudnovsky, A. (2003). Fractal dimension––a measure of fracture roughness and toughness of concrete. Engineering Fracture Mechanics, 70(1), 125-137.
Jeong, J. H., & Zollinger, D. (2004). Early-age curling and warping behavior: insights from a fully instrumented test-slab system. Transportation Research Record: Journal of the Transportation Research Board, (1896), 66-74.
Jeong, J. H., Lee, J. H., Suh, Y. C., & Zollinger, D. (2006). Effect of slab curling on movement and load transfer capacity of saw-cut joints. Transportation Research Record: Journal of the Transportation Research Board, (1947), 69-78.
Jung, Y., Zollinger, D., & Wimsatt, A. (2010). Test method and model development of subbase erosion for concrete pavement design. Transportation Research Record: Journal of the Transportation Research Board, (2154), 22-31.
Kim, S. H., Kim, S. Y., Shen, T., Park, K. T., Kim, I. H., Koo, J. M., & Seok, C. S. (2014). Fracture toughness of SA 508 GR. 1A nuclear piping using compact tension (CT) and large curved CT specimen. International Journal of Advances in Science and Technology, 142-146.
Kim, S. M., Kim Nelson, P., Ruiz, M., Otto Rasmussen, R., & Turner, D. (2003). Early-age behavior of concrete overlays on continuously reinforced concrete pavements. Transportation Research Record: Journal of the Transportation Research Board, (1823), 80-92.
Korte, S., Boel, V., De Corte, W., & De Schutter, G. (2014). Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests. Construction and Building Materials, 57, 1-8.
Kosmatka, S.H., & Panarese, W.C. (1988). Design and control of concrete mixtures. Illinois, USA: Portland Cement Association.
Lopes, R. M., Campilho, R. D. S. G., da Silva, F. J. G., & Faneco, T. M. S. (2016). Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints. International Journal of Adhesion and Adhesives, 67, 103-111.
Lura, P., Van Breugel, K., & Maruyama, I. (2002). Autogenous and Drying Shrinkage of High-Strength Lightweight Aggregate Concrete at Early Ages–The Effect of Specimen Size. In PRO 23: Early Age Cracking in Cementitious Systems—EAC’01, Proceedings of the International RILEM Conference (pp. 335-342).
Mack, J.W., Wu, C.L., Tarr, S.M., & Refai, T. (1997). Model development and interim design procedure guidelines for ultra-thin whitetopping pavements. Proceedings of the 6th international conference on concrete pavement design and rehabilitation, Indianapolis, USA. 231–54.
Martin, E., Leguillon, D., & Lacroix, C. (2001). A revisited criterion for crack deflection at an interface in a brittle bimaterial. Composites Science and Technology, 61(12), 1671-1679.
McCullough, B.F., & Elkins, G.E. (1979). CRC pavement design manual. Austin Research Engineers, Inc. Prepared for the Associated Reinforced Bar Producers−CRSI. Austin, Texas.
McCullough, B.F., Zolinger, D., & Dossey, T. (1999). Evaluation of the performance of Texas pavements made with different coarse aggregates. Center for Transportation Research, The University of Texas at Austin, Report # 3925-1.
Mehta, P.K., & Monteiro, P.J.M. (1993). Concrete: Microstructure, properties, and materials. Second Edition, the McGraw-Hill Companies, Inc.
Mendoza-Diaz, A., & McCullough, B.F. (1983). Design charts for the design of HMAC overlays on PCC pavements to prevent reflection cracking. Center for Transportation Research, The University of Texas at Austin, Research Report # 249-6.
Mindess, S., & Young, J.F. (1981) Concrete. New Jersey, USA: Prentice-Hall Inc.
Mirsayar, M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics, 1(4), 149-153.
Mirsayar, M. (2014b). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics, 2(2), 67-72.
Mirsayar, M. (2014c). A modified maximum tangential stress criterion for determination of the fracture toughness in bi-material notches–Part 1: Theory. Engineering Solid Mechanics, 2(4), 277-282.
Mirsayar, M. M. (2014a). On fracture of kinked interface cracks–The role of T-stress. Materials & Design, 61, 117-123.
Mirsayar, M. M. (2015a). Mixed mode fracture analysis using extended maximum tangential strain criterion. Materials & Design, 86, 941-947.
Mirsayar, M. M. (2015b). Three dimensional investigation of mode I stress intensity factor variations in crack front using finite element method. American Journal of Engineering and Applied Sciences, 8(1), 11.
Mirsayar, M. M., & Park, P. (2015). The role of T-stress on kinking angle of interface cracks. Materials & Design, 80, 12-19.
Mirsayar, M. M., & Park, P. (2016a). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the Mechanical Behavior of Biomedical Materials, 59, 236-240.
Mirsayar, M. M., & Park, P. (2016b). Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria. Theoretical and Applied Fracture Mechanics, 86, 233-238.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering fracture mechanics, 119, 124-131.
Mirsayar, M. M., Berto, F., Aliha, M. R. M., & Park, P. (2016b). Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Engineering Fracture Mechanics, 156, 114-123.
Mirsayar, M. M., Huang, K., & Zollinger, D. G. (2016a). New approach to determining concrete slab lift-off by use of interfacial fracture mechanics concepts. Transportation Research Record: Journal of the Transportation Research Board, 2590, 10-17.
Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., & Berto, F. (2017a). Extended MTSN criterion for fracture analysis of soda lime glass. Engineering Fracture Mechanics, 178, 50-59.
Mirsayar, M. M., Razmi, A., & Berto, F. (2017b). Tangential strain‐based criteria for mixed‐mode I/II fracture toughness of cement concrete. Fatigue & Fracture of Engineering Materials & Structures.
Mirsayar, M., & Samaei, A. (2013). Photoelastic study of bi-material notches: Effect of mismatch parameters. Engineering Solid Mechanics, 1(1), 21-26.
Mirsayar, M., & Samaei, A. (2014). Application of maximum tangential stress criterion in determination of fracture initiation angles of silicon/glass anodic bonds. Engineering Solid Mechanics, 2(3), 145-150.
Mirsayar, M., & Samaei, A. (2015). A finite element study on the fracture initiation at the zirconia/veneer interface: An application in dental materials. Engineering Solid Mechanics, 3(4), 207-214.
Mirsayar, M., & Takabi, B. (2016). Fracture of underwater notched structures. Engineering Solid Mechanics, 4(2), 43-52.
Mirsayar, M., Shi, X., & Zollinger, D. (2017c). Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen. Engineering Solid Mechanics, 5(4), 293-306.
Mirsayar, M.M. (2017). On fracture analysis of dental restorative materials under combined tensileshear loading, Theoretical and Applied Fracture Mechanics, doi: http://dx.doi.org/10.1016/j.tafmec. 2017.07.020
Mohamed, A., & Hansen, W. (1997). Effect of nonlinear temperature gradient on curling stress in concrete pavements. Transportation Research Record: Journal of the Transportation Research Board, 1568, 65-71.
Mohammad Aliha, M. R., Fotouhi, Y., & Berto, F. (2017). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405416688935.
Mousavi, A., & Aliha, M. (2016). Determination of fracture parameters for a bi-material center cracked plate subjected to biaxial loading using FEOD method. Engineering Solid Mechanics, 4(3), 117-124.
Munz, D. G., Shannon, J. L., & Bubsey, R. T. (1980). Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens. International Journal of Fracture, 16(3), R137-R141.
Nam, J. H., Kim, S. M., & Won, M. (2006). Measurement and analysis of early-age concrete strains and stresses: continuously reinforced concrete pavement under environmental loading. Transportation Research Record: Journal of the Transportation Research Board, 1947, 79-90.
Nam, J.H. (2005). Early-age behavior of CRCP and its implications for long-term performance (Doctoral dissertation). Austin, Texas: University of Texas at Austin.
Neville, A.M. (1996). Properties of concrete. Essex, UK: Addison Wesley Longman.
Nikbakht, M., Choupani, N., & Hosseini, S. R. (2009). 2D and 3D interlaminar fracture assessment under mixed-mode loading conditions. Materials Science and Engineering: A, 516(1), 162-168.
Palmer, R. P. (1988). A mechanistic model for the prediction of stresses, strains, and displacements in continuously reinforced concrete pavements (Doctoral dissertation, Texas A&M University).
Petersson, O., & Silfwerbrand, J. (1993). Thin concrete overlays on old asphalt roads. Proceedings of the 5th International conference on concrete pavement design and rehabilitation, USA: Purdue University. 241–6.
Polak, M. A. (1996). Effective stiffness model for reinforced concrete slabs. Journal of Structural Engineering, 122(9), 1025-1030.
Polak, M. A., & Vecchio, F. J. (1993). Nonlinear analysis of reinforced-concrete shells. Journal of Structural Engineering, 119(12), 3439-3462.
Pouteau, B., Balay, J.M., Chabot, A., & Larrard, F.D. (2004). Fatigue test and mechanical study of adhesion between concrete and asphalt. 9th International Symposium on Concrete Roads, Istanbul, Turkey.
Ranade, S. R., Guan, Y., Ohanehi, D. C., Dillard, J. G., Batra, R. C., & Dillard, D. A. (2014). A tapered bondline thickness double cantilever beam (DCB) specimen geometry for combinatorial fracture studies of adhesive bonds. International Journal of Adhesion and Adhesives, 55, 155-160.
Rao, C., Barenberg, E.J., Snyder, M.B., & Schmidt, S. (2001). Effects of temperature and moisture on the response of jointed concrete pavements. Seventh International Conference on Concrete Pavements. The Use of Concrete in Developing Long-Lasting Pavement Solutions for the 21st Century. 23-38.
Rao, S., & Roesler, J. R. (2005). Characterizing effective built-in curling from concrete pavement field measurements. Journal of Transportation Engineering, 131(4), 320-327.
Rasmussen, R. O., & Rozycki, D. K. (2004). Thin and ultra thin whitetopping–A synthesis of highway practice, NCHRP Synthesis 338. Transportation Research Board.
Razavi, S. M. J., Aliha, M. R. M., & Berto, F. (2017). Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoretical and Applied Fracture Mechanics.
Razmi, A., & Mirsayar, M. M. (2017). On the mixed mode I/II fracture properties of jute fiber-reinforced concrete. Construction and Building Materials, 148, 512-520.
Sadd, M., Shukla, A., Subramaniam, V.K., & Lee, K.W. (2008). Determination of interfacial bond behavior of composite concrete-asphalt pavement systems. US Department of Transportation. Report # FHWA-RIDOT-RTD-08-1.
Samarai, M., Popovics, S., & Malhotra, V. M. (1983). Effect of High Temperatures on the Properties of Hardened concrete. Transportation Research Record, 924, 50-56.
Seitl, S., Ríos, J. D., & Cifuentes, H. (2017). Comparison of fracture toughness values of normal and high strength concrete determined by three point bend and modified disk-shaped compact tension specimens. Fracture and Structural Integrity, 42, 56-65.
Shaeles, C. A., & Hover, K. C. (1988). Influence of mix proportions and construction operations on plastic shrinkage cracking in thin slabs. Materials Journal, 85(6), 495-504.
Sharifi, S., & Choupani, N. (2008). Stress analysis of adhesively bonded double-lap joints subjected to combined loading. World Academy of Science, Engineering and Technology, 41(17), 758-763.
Suh, Y.C., Hankins, K., & McCullough, B.F. (1992). Early-age behavior of continuously reinforced concrete pavement and calibration of the failure prediction model in the CRCP-7 Program. Center for Transportation Research, The University of Texas at Austin, Report # 1244-3.
Tang, T., Zollinger, D. G., & Senadheera, S. (1993). Analysis of concave curling in concrete slabs. Journal of Transportation Engineering, 119(4), 618-633.
Totsky, O.N. (1981). Behavior of multi-layered plates on Winkler foundation (in Russian). Moscow: Stroitel’naya Mekhanika I Raschet Sooruzhenii. 6, 54-58.
Tozzo, C., D’Andrea, A., & Al-Qadi, I. L. (2015). Prediction of fatigue failure at asphalt concrete layer interface from monotonic testing. Transportation Research Record: Journal of the Transportation Research Board, 2507, 50-56.
Tschegg, E. K., Macht, J., Jamek, M., & Steigenberger, J. (2007). Mechanical and fracture-mechanical properties of asphalt-concrete interfaces. ACI materials journal, 104(5), 474-480.
Tutluoglu, L., & Keles, C. (2011). Mode I fracture toughness determination with straight notched disk bending method. International Journal of Rock Mechanics and Mining Sciences, 48(8), 1248-1261.
Wei, M. D., Dai, F., Xu, N. W., Xu, Y., & Xia, K. (2015). Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens. Engineering Fracture Mechanics, 134, 286-303.
Wei, M. D., Dai, F., Xu, N. W., Liu, Y., & Zhao, T. (2017b). Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Engineering Fracture Mechanics. To appear.
Wei, M. D., Dai, F., Xu, N. W., Zhao, T., & Liu, Y. (2017a). An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks. International Journal of Rock Mechanics and Mining Sciences, 99, 28-38.
Westergaard, H.M. (1927). Analysis of stresses in concrete pavements due to variations of temperature. Proceedings of the Sixth Annual Meeting of the Highway Research Board, 6, 201-215.
Yu, H., Khazanovich, L., Darter, M., & Ardani, A. (1998). Analysis of concrete pavement responses to temperature and wheel loads measured from intrumented slabs. Transportation Research Record: Journal of the Transportation Research Board, 1639, 94-101.
Zhang, J., & Li, V. C. (2001). Influence of supporting base characteristics on shrinkage-induced stresses in concrete pavements. Journal of Transportation Engineering, 127(6), 455-462.
Zhang, X. (2012). Effects of base characteristics on curling stresses of continuously reinforced concrete pavements. In CICTP 2012: Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient (pp. 3169-3174).
Zhutovsky, S., Kovler, K., & Bentur, A. (2002). Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage. Materials and Structures, 35(2), 97-101.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Aliha, M. R. M., & Fattahi Amirdehi, H. R. (2017). Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents. Fatigue & Fracture of Engineering Materials & Structures, 40(1), 55-68.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016). A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures, 90, 167-177.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023-1034.
Aliha, M. R. M., Mahdavi, E., & Ayatollahi, M. R. (2017). The influence of specimen type on tensile fracture toughness of rock materials. Pure and Applied Geophysics, 174(3), 1237-1253.
Aliha, M. R. M., Pakzad, R., & Ayatollahi, M. R. (2013). Numerical analyses of a cracked straight-through flattened Brazilian disk specimen under mixed-mode loading. Journal of Engineering Mechanics, 140(1), 219-224.
Álvarez, D., Blackman, B. R. K., Guild, F. J., & Kinloch, A. J. (2014). Mode I fracture in adhesively-bonded joints: A mesh-size independent modelling approach using cohesive elements. Engineering Fracture Mechanics, 115, 73-95.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M., & Ayatollahi, M. R. (2012). Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 93, 153-167.
Ameri, M., Nowbakht, S., Molayem, M., & Aliha, M. R. M. (2016). Investigation of fatigue and fracture properties of asphalt mixtures modified with carbon nanotubes. Fatigue & Fracture of Engineering Materials & Structures, 39(7), 896-906.
American Association of State Highway, & Transportation Officials. (1993). AASHTO Guide for Design of Pavement Structures, 1993 (Vol. 1). AASHTO.
Arabi, H., Mirsayar, M. M., Samaei, A. T., & Darandeh, M. (2013). Study of characteristic equation of the elastic stress field near bimaterial notches. Strength of Materials, 45(5), 598-606.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631-4641.
Ayatollahi, M. R., & Aliha, M. R. M. (2009a). Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. International Journal of Solids and Structures, 46(2), 311-321.
Ayatollahi, M. R., & Aliha, M. R. M. (2009b). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). On the use of an anti‐symmetric four‐point bend specimen for mode II fracture experiments. Fatigue & Fracture of Engineering Materials & Structures, 34(11), 898-907.
Ayatollahi, M. R., & Mirsayar, M. M. (2011). Kinking angles for interface cracks. Procedia Engineering, 10, 325-329.
Ayatollahi, M. R., Dehghany, M., & Mirsayar, M. M. (2013). A comprehensive photoelastic study for mode I sharp V-notches. European Journal of Mechanics-A/Solids, 37, 216-230.
Ayatollahi, M. R., Mirsayar, M. M., & Dehghany, M. (2011). Experimental determination of stress field parameters in bi-material notches using photoelasticity. Materials & Design, 32(10), 4901-4908.
Ayatollahi, M. R., Mirsayar, M. M., & Nejati, M. (2010a). Evaluation of first non-singular stress term in bi-material notches. Computational Materials Science, 50(2), 752-760.
Ayatollahi, M. R., Nejati, M., & Mirsayar, M. M. (2010b). An overdeterministic method for stress analysis of bi-material corners and interface cracks using finite element method. In Proceedings of the 9th Conference of Iranian Aerospace Society, Tehran, Iran.
Bahmani, A., Aliha, M. R. M., & Berto, F. (2017). Investigation of fracture toughness for a polycrystalline graphite under combined tensile-tear deformation. Theoretical and Applied Fracture Mechanics. To appear.
Bari, M. E., & Zollinger, D. G. (2016). New concepts for the assessment of concrete slab interfacial effects in pavement design and analysis. International Journal of Pavement Engineering, 17(3), 233-244.
Bažant, Z. P., & Najjar, L. J. (1971). Drying of concrete as a nonlinear diffusion problem. Cement and Concrete Research, 1(5), 461-473.
Bissonnette, B., Attiogbe, E. K., Miltenberger, M. A., & Fortin, C. (2007). Drying shrinkage, curling, and joint opening of slabs-on-ground. ACI Materials Journal, 104(3), 259-267.
Brühwiler, E., & Wittmann, F. H. (1990). The wedge splitting test, a new method of performing stable fracture mechanics tests. Engineering Fracture Mechanics, 35(1-3), 117-125.
Byfors, J. (1980), Plain concrete at early-ages. Sweden: Swedish Cement and Concrete Research Institute. Report # FO 3:8.
Campilho, R. D. S. G., Banea, M. D., Chaves, F. J. P., & Da Silva, L. F. M. (2011). eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I. Computational Materials Science, 50(4), 1543-1549.
Cha, S. W. (1999). Modeling of hydration process and analysis of thermal and hygral stresses in hardening concrete. Seoul National University, Seoul, Korea.
Chabot, A., Hun, M., & Hammoum, F. (2013). Mechanical analysis of a mixed mode debonding test for “composite” pavements. Construction and Building Materials, 40, 1076-1087.
Choupani, N. (2008). Mixed-mode cohesive fracture of adhesive joints: Experimental and numerical studies. Engineering Fracture Mechanics, 75(15), 4363-4382.
Dai, F., Wei, M. D., Xu, N. W., Ma, Y., & Yang, D. S. (2015). Numerical assessment of the progressive rock fracture mechanism of cracked chevron notched Brazilian disc specimens. Rock Mechanics and Rock Engineering, 48(2), 463-479.
Dehghany, M., Saeidi Googarchin, H., & Aliha, M. R. M. (2017). The role of first non‐singular stress terms in mixed mode brittle fracture of V‐notched components: an experimental study. Fatigue & Fracture of Engineering Materials & Structures, 40(4), 623-641.
Delcourt, C., & Jasenski, A. (1994). First application of a concrete overlay on a bitumen-paved motorway in Belgium. In the Proceedings of the 7th International Symposium on Concrete Roads, 2(3), 15-20.
Emborg, M. (1989). Thermal stresses in concrete structures at early ages (Doctoral dissertation, Luleå tekniska universitet).
Evans, A. G., Rühle, M., Dalgleish, B. J., & Charalambides, P. G. (1990). The fracture energy of bimaterial interfaces. Materials Science and Engineering: A, 126(1-2), 53-64.
Fakhri, M., Amoosoltani, E., & Aliha, M. R. M. (2017). Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber. Engineering Fracture Mechanics, 180, 43-59.
Fernlund, G., & Spelt, J. K. (1994). Mixed-mode fracture characterization of adhesive joints. Composites Science and Technology, 50(4), 441-449.
Fernlund, G., Papini, M., McCammond, D., & Spelt, J. K. (1994). Fracture load predictions for adhesive joints. Composites Science and Technology, 51(4), 587-600.
Funatsu, T., Kuruppu, M., & Matsui, K. (2014). Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. International Journal of Rock Mechanics and Mining Sciences, 67, 1-8.
He, M. Y., & Hutchinson, J. W. (1989). Kinking of a crack out of an interface. Journal of Applied Mechanics, 56(2), 270-278.
Highway Research Board. Continuously Reinforced Concrete Pavement (1973). National Cooperative Highway Research Program Synthesis of Highway Practice 16, Washington D.C.
Hurd, D. S., Caretta, R., & Gerberich, W. W. (1995). An experimental fracture mechanics study of a strong interface: The silicon/glass anodic bond. Journal of Materials Research, 10(2), 387-400.
Issa, M. A., Issa, M. A., Islam, M. S., & Chudnovsky, A. (2003). Fractal dimension––a measure of fracture roughness and toughness of concrete. Engineering Fracture Mechanics, 70(1), 125-137.
Jeong, J. H., & Zollinger, D. (2004). Early-age curling and warping behavior: insights from a fully instrumented test-slab system. Transportation Research Record: Journal of the Transportation Research Board, (1896), 66-74.
Jeong, J. H., Lee, J. H., Suh, Y. C., & Zollinger, D. (2006). Effect of slab curling on movement and load transfer capacity of saw-cut joints. Transportation Research Record: Journal of the Transportation Research Board, (1947), 69-78.
Jung, Y., Zollinger, D., & Wimsatt, A. (2010). Test method and model development of subbase erosion for concrete pavement design. Transportation Research Record: Journal of the Transportation Research Board, (2154), 22-31.
Kim, S. H., Kim, S. Y., Shen, T., Park, K. T., Kim, I. H., Koo, J. M., & Seok, C. S. (2014). Fracture toughness of SA 508 GR. 1A nuclear piping using compact tension (CT) and large curved CT specimen. International Journal of Advances in Science and Technology, 142-146.
Kim, S. M., Kim Nelson, P., Ruiz, M., Otto Rasmussen, R., & Turner, D. (2003). Early-age behavior of concrete overlays on continuously reinforced concrete pavements. Transportation Research Record: Journal of the Transportation Research Board, (1823), 80-92.
Korte, S., Boel, V., De Corte, W., & De Schutter, G. (2014). Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests. Construction and Building Materials, 57, 1-8.
Kosmatka, S.H., & Panarese, W.C. (1988). Design and control of concrete mixtures. Illinois, USA: Portland Cement Association.
Lopes, R. M., Campilho, R. D. S. G., da Silva, F. J. G., & Faneco, T. M. S. (2016). Comparative evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam tests for estimation of the tensile fracture toughness of adhesive joints. International Journal of Adhesion and Adhesives, 67, 103-111.
Lura, P., Van Breugel, K., & Maruyama, I. (2002). Autogenous and Drying Shrinkage of High-Strength Lightweight Aggregate Concrete at Early Ages–The Effect of Specimen Size. In PRO 23: Early Age Cracking in Cementitious Systems—EAC’01, Proceedings of the International RILEM Conference (pp. 335-342).
Mack, J.W., Wu, C.L., Tarr, S.M., & Refai, T. (1997). Model development and interim design procedure guidelines for ultra-thin whitetopping pavements. Proceedings of the 6th international conference on concrete pavement design and rehabilitation, Indianapolis, USA. 231–54.
Martin, E., Leguillon, D., & Lacroix, C. (2001). A revisited criterion for crack deflection at an interface in a brittle bimaterial. Composites Science and Technology, 61(12), 1671-1679.
McCullough, B.F., & Elkins, G.E. (1979). CRC pavement design manual. Austin Research Engineers, Inc. Prepared for the Associated Reinforced Bar Producers−CRSI. Austin, Texas.
McCullough, B.F., Zolinger, D., & Dossey, T. (1999). Evaluation of the performance of Texas pavements made with different coarse aggregates. Center for Transportation Research, The University of Texas at Austin, Report # 3925-1.
Mehta, P.K., & Monteiro, P.J.M. (1993). Concrete: Microstructure, properties, and materials. Second Edition, the McGraw-Hill Companies, Inc.
Mendoza-Diaz, A., & McCullough, B.F. (1983). Design charts for the design of HMAC overlays on PCC pavements to prevent reflection cracking. Center for Transportation Research, The University of Texas at Austin, Research Report # 249-6.
Mindess, S., & Young, J.F. (1981) Concrete. New Jersey, USA: Prentice-Hall Inc.
Mirsayar, M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics, 1(4), 149-153.
Mirsayar, M. (2014b). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics, 2(2), 67-72.
Mirsayar, M. (2014c). A modified maximum tangential stress criterion for determination of the fracture toughness in bi-material notches–Part 1: Theory. Engineering Solid Mechanics, 2(4), 277-282.
Mirsayar, M. M. (2014a). On fracture of kinked interface cracks–The role of T-stress. Materials & Design, 61, 117-123.
Mirsayar, M. M. (2015a). Mixed mode fracture analysis using extended maximum tangential strain criterion. Materials & Design, 86, 941-947.
Mirsayar, M. M. (2015b). Three dimensional investigation of mode I stress intensity factor variations in crack front using finite element method. American Journal of Engineering and Applied Sciences, 8(1), 11.
Mirsayar, M. M., & Park, P. (2015). The role of T-stress on kinking angle of interface cracks. Materials & Design, 80, 12-19.
Mirsayar, M. M., & Park, P. (2016a). Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. Journal of the Mechanical Behavior of Biomedical Materials, 59, 236-240.
Mirsayar, M. M., & Park, P. (2016b). Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria. Theoretical and Applied Fracture Mechanics, 86, 233-238.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering fracture mechanics, 119, 124-131.
Mirsayar, M. M., Berto, F., Aliha, M. R. M., & Park, P. (2016b). Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Engineering Fracture Mechanics, 156, 114-123.
Mirsayar, M. M., Huang, K., & Zollinger, D. G. (2016a). New approach to determining concrete slab lift-off by use of interfacial fracture mechanics concepts. Transportation Research Record: Journal of the Transportation Research Board, 2590, 10-17.
Mirsayar, M. M., Joneidi, V. A., Petrescu, R. V. V., Petrescu, F. I. T., & Berto, F. (2017a). Extended MTSN criterion for fracture analysis of soda lime glass. Engineering Fracture Mechanics, 178, 50-59.
Mirsayar, M. M., Razmi, A., & Berto, F. (2017b). Tangential strain‐based criteria for mixed‐mode I/II fracture toughness of cement concrete. Fatigue & Fracture of Engineering Materials & Structures.
Mirsayar, M., & Samaei, A. (2013). Photoelastic study of bi-material notches: Effect of mismatch parameters. Engineering Solid Mechanics, 1(1), 21-26.
Mirsayar, M., & Samaei, A. (2014). Application of maximum tangential stress criterion in determination of fracture initiation angles of silicon/glass anodic bonds. Engineering Solid Mechanics, 2(3), 145-150.
Mirsayar, M., & Samaei, A. (2015). A finite element study on the fracture initiation at the zirconia/veneer interface: An application in dental materials. Engineering Solid Mechanics, 3(4), 207-214.
Mirsayar, M., & Takabi, B. (2016). Fracture of underwater notched structures. Engineering Solid Mechanics, 4(2), 43-52.
Mirsayar, M., Shi, X., & Zollinger, D. (2017c). Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen. Engineering Solid Mechanics, 5(4), 293-306.
Mirsayar, M.M. (2017). On fracture analysis of dental restorative materials under combined tensileshear loading, Theoretical and Applied Fracture Mechanics, doi: http://dx.doi.org/10.1016/j.tafmec. 2017.07.020
Mohamed, A., & Hansen, W. (1997). Effect of nonlinear temperature gradient on curling stress in concrete pavements. Transportation Research Record: Journal of the Transportation Research Board, 1568, 65-71.
Mohammad Aliha, M. R., Fotouhi, Y., & Berto, F. (2017). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405416688935.
Mousavi, A., & Aliha, M. (2016). Determination of fracture parameters for a bi-material center cracked plate subjected to biaxial loading using FEOD method. Engineering Solid Mechanics, 4(3), 117-124.
Munz, D. G., Shannon, J. L., & Bubsey, R. T. (1980). Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens. International Journal of Fracture, 16(3), R137-R141.
Nam, J. H., Kim, S. M., & Won, M. (2006). Measurement and analysis of early-age concrete strains and stresses: continuously reinforced concrete pavement under environmental loading. Transportation Research Record: Journal of the Transportation Research Board, 1947, 79-90.
Nam, J.H. (2005). Early-age behavior of CRCP and its implications for long-term performance (Doctoral dissertation). Austin, Texas: University of Texas at Austin.
Neville, A.M. (1996). Properties of concrete. Essex, UK: Addison Wesley Longman.
Nikbakht, M., Choupani, N., & Hosseini, S. R. (2009). 2D and 3D interlaminar fracture assessment under mixed-mode loading conditions. Materials Science and Engineering: A, 516(1), 162-168.
Palmer, R. P. (1988). A mechanistic model for the prediction of stresses, strains, and displacements in continuously reinforced concrete pavements (Doctoral dissertation, Texas A&M University).
Petersson, O., & Silfwerbrand, J. (1993). Thin concrete overlays on old asphalt roads. Proceedings of the 5th International conference on concrete pavement design and rehabilitation, USA: Purdue University. 241–6.
Polak, M. A. (1996). Effective stiffness model for reinforced concrete slabs. Journal of Structural Engineering, 122(9), 1025-1030.
Polak, M. A., & Vecchio, F. J. (1993). Nonlinear analysis of reinforced-concrete shells. Journal of Structural Engineering, 119(12), 3439-3462.
Pouteau, B., Balay, J.M., Chabot, A., & Larrard, F.D. (2004). Fatigue test and mechanical study of adhesion between concrete and asphalt. 9th International Symposium on Concrete Roads, Istanbul, Turkey.
Ranade, S. R., Guan, Y., Ohanehi, D. C., Dillard, J. G., Batra, R. C., & Dillard, D. A. (2014). A tapered bondline thickness double cantilever beam (DCB) specimen geometry for combinatorial fracture studies of adhesive bonds. International Journal of Adhesion and Adhesives, 55, 155-160.
Rao, C., Barenberg, E.J., Snyder, M.B., & Schmidt, S. (2001). Effects of temperature and moisture on the response of jointed concrete pavements. Seventh International Conference on Concrete Pavements. The Use of Concrete in Developing Long-Lasting Pavement Solutions for the 21st Century. 23-38.
Rao, S., & Roesler, J. R. (2005). Characterizing effective built-in curling from concrete pavement field measurements. Journal of Transportation Engineering, 131(4), 320-327.
Rasmussen, R. O., & Rozycki, D. K. (2004). Thin and ultra thin whitetopping–A synthesis of highway practice, NCHRP Synthesis 338. Transportation Research Board.
Razavi, S. M. J., Aliha, M. R. M., & Berto, F. (2017). Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theoretical and Applied Fracture Mechanics.
Razmi, A., & Mirsayar, M. M. (2017). On the mixed mode I/II fracture properties of jute fiber-reinforced concrete. Construction and Building Materials, 148, 512-520.
Sadd, M., Shukla, A., Subramaniam, V.K., & Lee, K.W. (2008). Determination of interfacial bond behavior of composite concrete-asphalt pavement systems. US Department of Transportation. Report # FHWA-RIDOT-RTD-08-1.
Samarai, M., Popovics, S., & Malhotra, V. M. (1983). Effect of High Temperatures on the Properties of Hardened concrete. Transportation Research Record, 924, 50-56.
Seitl, S., Ríos, J. D., & Cifuentes, H. (2017). Comparison of fracture toughness values of normal and high strength concrete determined by three point bend and modified disk-shaped compact tension specimens. Fracture and Structural Integrity, 42, 56-65.
Shaeles, C. A., & Hover, K. C. (1988). Influence of mix proportions and construction operations on plastic shrinkage cracking in thin slabs. Materials Journal, 85(6), 495-504.
Sharifi, S., & Choupani, N. (2008). Stress analysis of adhesively bonded double-lap joints subjected to combined loading. World Academy of Science, Engineering and Technology, 41(17), 758-763.
Suh, Y.C., Hankins, K., & McCullough, B.F. (1992). Early-age behavior of continuously reinforced concrete pavement and calibration of the failure prediction model in the CRCP-7 Program. Center for Transportation Research, The University of Texas at Austin, Report # 1244-3.
Tang, T., Zollinger, D. G., & Senadheera, S. (1993). Analysis of concave curling in concrete slabs. Journal of Transportation Engineering, 119(4), 618-633.
Totsky, O.N. (1981). Behavior of multi-layered plates on Winkler foundation (in Russian). Moscow: Stroitel’naya Mekhanika I Raschet Sooruzhenii. 6, 54-58.
Tozzo, C., D’Andrea, A., & Al-Qadi, I. L. (2015). Prediction of fatigue failure at asphalt concrete layer interface from monotonic testing. Transportation Research Record: Journal of the Transportation Research Board, 2507, 50-56.
Tschegg, E. K., Macht, J., Jamek, M., & Steigenberger, J. (2007). Mechanical and fracture-mechanical properties of asphalt-concrete interfaces. ACI materials journal, 104(5), 474-480.
Tutluoglu, L., & Keles, C. (2011). Mode I fracture toughness determination with straight notched disk bending method. International Journal of Rock Mechanics and Mining Sciences, 48(8), 1248-1261.
Wei, M. D., Dai, F., Xu, N. W., Xu, Y., & Xia, K. (2015). Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens. Engineering Fracture Mechanics, 134, 286-303.
Wei, M. D., Dai, F., Xu, N. W., Liu, Y., & Zhao, T. (2017b). Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Engineering Fracture Mechanics. To appear.
Wei, M. D., Dai, F., Xu, N. W., Zhao, T., & Liu, Y. (2017a). An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks. International Journal of Rock Mechanics and Mining Sciences, 99, 28-38.
Westergaard, H.M. (1927). Analysis of stresses in concrete pavements due to variations of temperature. Proceedings of the Sixth Annual Meeting of the Highway Research Board, 6, 201-215.
Yu, H., Khazanovich, L., Darter, M., & Ardani, A. (1998). Analysis of concrete pavement responses to temperature and wheel loads measured from intrumented slabs. Transportation Research Record: Journal of the Transportation Research Board, 1639, 94-101.
Zhang, J., & Li, V. C. (2001). Influence of supporting base characteristics on shrinkage-induced stresses in concrete pavements. Journal of Transportation Engineering, 127(6), 455-462.
Zhang, X. (2012). Effects of base characteristics on curling stresses of continuously reinforced concrete pavements. In CICTP 2012: Multimodal Transportation Systems—Convenient, Safe, Cost-Effective, Efficient (pp. 3169-3174).
Zhutovsky, S., Kovler, K., & Bentur, A. (2002). Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage. Materials and Structures, 35(2), 97-101.