How to cite this paper
Adibi, O., Azadi, A., Farhanieh, B & Afshin, H. (2017). A parametric study on the effects of surface explosions on buried high pressure gas pipelines.Engineering Solid Mechanics, 5(4), 225-244.
Refrences
Alonso, F. D., Ferradas, E. G., Minarro, M. D., Aznar, A. M., Gimeno, J. R., & Perez, J. F. S. (2008). Consequence analysis by means of characteristic curves to determine the damage to buildings from the detonation of explosive substances as a function of TNT equivalence. Journal of Loss Prevention in the Process Industries, 21(1), 74-81.
Ambrosini, R. D., Luccioni, B. M., Danesi, R. F., Riera, J. D., & Rocha, M. M. (2002). Size of craters produced by explosive charges on or above the ground surface. Shock Waves, 12(1), 69-78.
Ambrosini, R. D., Luccioni, B. M., & Danesi, R. F. (2004). Influence of the soil properties on craters produced by explosions on the soil surface. Mec'anica Computacional, 23, 571-590.
Ambrosini, R. D., & Luccioni, B. M. (2006). Craters produced by explosions on the soil surface. Journal of Applied Mechanics, 73(6), 890-900.
Ambrosini, R. D., & Luccioni, B. M. (2012). Craters produced by explosions on, above and under the ground. In H. Hao & Z. X. Li (Eds.), Advances in Protective Structures Research (pp. 365-396). London, UK: CRC Press.
Baker, E. L., Murphy, D., Stiel, L. I., & Wrobel, E. (2012). Theory and calibration of JWL and JWLB thermodynamic equations of state. WIT Transactions on State of the Art in Science and Engineering, 60, 41-52.
Baudin, G., & Serradeill, R. (2010). Review of Jones-Wilkins-Lee equation of state. EPJ Web of Conferences, 10(21), 1-4.
Baylot, J. T., Bullock, B., Slawson, T. R., & Woodson, S. C. (2005). Blast response of lightly attached concrete masonry unit walls. Journal of Structural Engineering, 131(8), 1186-1193.
Bjorklund, O. (2008). Modelling of failure (Master’s thesis). Retrived from http://www.diva-portal.org/smash/get/diva2:17900/FULLTEXT01.pdf.
Castellano, A. J., Caltagirone, J., Sock, F. E., & Dobbs, N. (1990). Structures to resist the effect of accidental explosions. Washington, DC: US Department of the Army and Defense Special Weapons Agency.
Cengel, Y. A., & Boles, M. A. (2015). Thermodynamics: an engineering approach. New York, NY: McGraw-Hill.
Chen, W. F., & Mizuno, E. (1990). Nonlinear analysis in soil mechanics: theory and implementation. Amsterdam, North Holland: Elsevier Science Publishers.
Du, Y., Zhang, F., Zhang, A., Ma, L., & Zheng, J. (2016). Consequences assessment of explosions in pipes using coupled FEM-SPH method. Journal of Loss Prevention in the Process Industries, 43, 549-558.
Gilbert, F. K., & Kenneth, J. G. (1985). Explosive shocks in air. New York, NY: Springer Science.
Grujicic, M., & Bell, W. C. (2011). A computational analysis of survivability of a pick-up truck subjected to mine detonation loads. Multidiscipline Modeling in Materials and Structures, 7(4), 386-423.
Grujicic, M., Pandurangan, B., Qiao, R., Cheeseman, B. A., Roy, W. N., Skaggs, R. R., & Gupta, R. (2008). Parameterization of the porous-material model for sand with different levels of water saturation. Soil Dynamics and Earthquake Engineering, 28(1), 20-35.
Hu, D., Long, T., Liu, C., Yang, G., & Han, X. (2014). Swelling movement induced by underground explosion of aluminized explosive in multilayered compact material. International Journal of Rock Mechanics and Mining Sciences, 71, 330-339.
Jing, X. F., Cai, Z. Y., & Liu, K. H. (2014). Numerical Simulation of Response of Explosion Ground Shock to Buried Gas Pipeline. Applied Mechanics and Materials, 448, 3970-3974.
Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, presented at the 7th International Symposium on Ballistics, The Hague, April 1983. The Hague, South Holland: 7th International Symposium on Ballistics Publishing.
Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31-48.
Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., & Nagy, A. (1983). Response of various metals to large torsional strains over a large range of strain rates-part 1: ductile metals. Journal of Engineering Materials and Technology, 105, 42-47.
Koneshwaran, S., Thambiratnam, D. P., & Gallage, C. (2015). Blast response of segmented bored tunnel using coupled SPH-FE method. Structures, 2, 58-71.
Laine, L., & Sandvik, A. (2001). Derivation of mechanical properties for sand. Presented at the 4th Asia-Pacific Conference on shock and impact loads on structures, Singapore, November 2001. Singapore: CI-Premier.
Li, M., Lu, X., Lu, X., & Ye, L. (2014). Influence of soil-structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 477-485.
Luccioni, B. M., Ambrosini, R. D., Nurick, G., & Snyman, I. (2009). Craters produced by underground explosions. Computers & Structures, 87(21), 1366-1373.
Mambou, L. L. N., Ndop, J., & Ndjaka, J. M. B. (2015). Modeling and numerical analysis of granite rock specimen under mechanical loading and fire. Journal of Rock Mechanics and Geotechnical Engineering, 7(1), 101-108.
Mirzaei, M., Najafi, M., & Niasari, H. (2015). Experimental and numerical analysis of dynamic rupture of steel pipes under internal high-speed moving pressures. International Journal of Impact Engineering, 85, 27-36.
Mokhtari, M., & Nia, A. A. (2015). A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation. Archives of Civil and Mechanical Engineering, 15(3), 668-679.
Mokhtari, M., & Nia, A. A. (2016). The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dynamics and Earthquake Engineering, 87, 52-62.
Panji, M., Koohsari, H., Adampira, M., Alielahi, H., & Marnani, J. A. (2016). Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 480-488.
Rickman, D. D., & Murrell, D. W. (2007). Development of an improved methodology for predicting airblast pressure relief on a directly loaded wall. Journal of Pressure Vessel Technology, 129(1), 195-204.
Seidt, J. D., Gilat, A., Klein, J. A., & Leach, J. R. (2007). High strain rate, high temperature constitutive and failure models for EOD impact scenarios, presented at the SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Springfield, June 2007. Springfield, Massachusetts: Society for Experimental Mechanics.
Son, J., & Lee, H. J. (2011). Performance of cable-stayed bridge pylons subjected to blast loading. Engineering Structures, 33(4), 1133-1148.
Steinberg, D. J., Cochran, S. G., & Guinan, M. W. (1980). A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics, 51(3), 1498-1504.
Tarefder, R. A., Ahmed, M. U., & Rahman, A. (2016). Effects of cross-anisotropy and stress- dependency of pavement layers on pavement responses under dynamic truck loading. Journal of RockMechanics and Geotechnical Engineering, 8(3), 366-377.
Trelat, S., Sochet, I., Autrusson, B., Cheval, K., & Loiseau, O. (2007). Impact of a shock wave on a structure on explosion at altitude. Journal of Loss Prevention in the Process Industries, 20(4), 509-516.
Wilkening, H., & Baraldi, D. (2007). CFD modelling of accidental hydrogen release from pipelines. International Journal of Hydrogen Energy, 32(13), 2206-2215.
Yang, Y., Xie, X., & Wang, R. (2010). Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion. Journal of Rock Mechanics and Geotechnical Engineering, 2(4), 373-384.
Zhang, B. Y., Li, H. H., & Wang, W. (2015). Numerical study of dynamic response and failure analysis of spherical storage tanks under external blast loading. Journal of Loss Prevention in the Process Industries, 34, 209-217.
Ambrosini, R. D., Luccioni, B. M., Danesi, R. F., Riera, J. D., & Rocha, M. M. (2002). Size of craters produced by explosive charges on or above the ground surface. Shock Waves, 12(1), 69-78.
Ambrosini, R. D., Luccioni, B. M., & Danesi, R. F. (2004). Influence of the soil properties on craters produced by explosions on the soil surface. Mec'anica Computacional, 23, 571-590.
Ambrosini, R. D., & Luccioni, B. M. (2006). Craters produced by explosions on the soil surface. Journal of Applied Mechanics, 73(6), 890-900.
Ambrosini, R. D., & Luccioni, B. M. (2012). Craters produced by explosions on, above and under the ground. In H. Hao & Z. X. Li (Eds.), Advances in Protective Structures Research (pp. 365-396). London, UK: CRC Press.
Baker, E. L., Murphy, D., Stiel, L. I., & Wrobel, E. (2012). Theory and calibration of JWL and JWLB thermodynamic equations of state. WIT Transactions on State of the Art in Science and Engineering, 60, 41-52.
Baudin, G., & Serradeill, R. (2010). Review of Jones-Wilkins-Lee equation of state. EPJ Web of Conferences, 10(21), 1-4.
Baylot, J. T., Bullock, B., Slawson, T. R., & Woodson, S. C. (2005). Blast response of lightly attached concrete masonry unit walls. Journal of Structural Engineering, 131(8), 1186-1193.
Bjorklund, O. (2008). Modelling of failure (Master’s thesis). Retrived from http://www.diva-portal.org/smash/get/diva2:17900/FULLTEXT01.pdf.
Castellano, A. J., Caltagirone, J., Sock, F. E., & Dobbs, N. (1990). Structures to resist the effect of accidental explosions. Washington, DC: US Department of the Army and Defense Special Weapons Agency.
Cengel, Y. A., & Boles, M. A. (2015). Thermodynamics: an engineering approach. New York, NY: McGraw-Hill.
Chen, W. F., & Mizuno, E. (1990). Nonlinear analysis in soil mechanics: theory and implementation. Amsterdam, North Holland: Elsevier Science Publishers.
Du, Y., Zhang, F., Zhang, A., Ma, L., & Zheng, J. (2016). Consequences assessment of explosions in pipes using coupled FEM-SPH method. Journal of Loss Prevention in the Process Industries, 43, 549-558.
Gilbert, F. K., & Kenneth, J. G. (1985). Explosive shocks in air. New York, NY: Springer Science.
Grujicic, M., & Bell, W. C. (2011). A computational analysis of survivability of a pick-up truck subjected to mine detonation loads. Multidiscipline Modeling in Materials and Structures, 7(4), 386-423.
Grujicic, M., Pandurangan, B., Qiao, R., Cheeseman, B. A., Roy, W. N., Skaggs, R. R., & Gupta, R. (2008). Parameterization of the porous-material model for sand with different levels of water saturation. Soil Dynamics and Earthquake Engineering, 28(1), 20-35.
Hu, D., Long, T., Liu, C., Yang, G., & Han, X. (2014). Swelling movement induced by underground explosion of aluminized explosive in multilayered compact material. International Journal of Rock Mechanics and Mining Sciences, 71, 330-339.
Jing, X. F., Cai, Z. Y., & Liu, K. H. (2014). Numerical Simulation of Response of Explosion Ground Shock to Buried Gas Pipeline. Applied Mechanics and Materials, 448, 3970-3974.
Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, presented at the 7th International Symposium on Ballistics, The Hague, April 1983. The Hague, South Holland: 7th International Symposium on Ballistics Publishing.
Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31-48.
Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., & Nagy, A. (1983). Response of various metals to large torsional strains over a large range of strain rates-part 1: ductile metals. Journal of Engineering Materials and Technology, 105, 42-47.
Koneshwaran, S., Thambiratnam, D. P., & Gallage, C. (2015). Blast response of segmented bored tunnel using coupled SPH-FE method. Structures, 2, 58-71.
Laine, L., & Sandvik, A. (2001). Derivation of mechanical properties for sand. Presented at the 4th Asia-Pacific Conference on shock and impact loads on structures, Singapore, November 2001. Singapore: CI-Premier.
Li, M., Lu, X., Lu, X., & Ye, L. (2014). Influence of soil-structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 477-485.
Luccioni, B. M., Ambrosini, R. D., Nurick, G., & Snyman, I. (2009). Craters produced by underground explosions. Computers & Structures, 87(21), 1366-1373.
Mambou, L. L. N., Ndop, J., & Ndjaka, J. M. B. (2015). Modeling and numerical analysis of granite rock specimen under mechanical loading and fire. Journal of Rock Mechanics and Geotechnical Engineering, 7(1), 101-108.
Mirzaei, M., Najafi, M., & Niasari, H. (2015). Experimental and numerical analysis of dynamic rupture of steel pipes under internal high-speed moving pressures. International Journal of Impact Engineering, 85, 27-36.
Mokhtari, M., & Nia, A. A. (2015). A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation. Archives of Civil and Mechanical Engineering, 15(3), 668-679.
Mokhtari, M., & Nia, A. A. (2016). The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dynamics and Earthquake Engineering, 87, 52-62.
Panji, M., Koohsari, H., Adampira, M., Alielahi, H., & Marnani, J. A. (2016). Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 480-488.
Rickman, D. D., & Murrell, D. W. (2007). Development of an improved methodology for predicting airblast pressure relief on a directly loaded wall. Journal of Pressure Vessel Technology, 129(1), 195-204.
Seidt, J. D., Gilat, A., Klein, J. A., & Leach, J. R. (2007). High strain rate, high temperature constitutive and failure models for EOD impact scenarios, presented at the SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Springfield, June 2007. Springfield, Massachusetts: Society for Experimental Mechanics.
Son, J., & Lee, H. J. (2011). Performance of cable-stayed bridge pylons subjected to blast loading. Engineering Structures, 33(4), 1133-1148.
Steinberg, D. J., Cochran, S. G., & Guinan, M. W. (1980). A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics, 51(3), 1498-1504.
Tarefder, R. A., Ahmed, M. U., & Rahman, A. (2016). Effects of cross-anisotropy and stress- dependency of pavement layers on pavement responses under dynamic truck loading. Journal of RockMechanics and Geotechnical Engineering, 8(3), 366-377.
Trelat, S., Sochet, I., Autrusson, B., Cheval, K., & Loiseau, O. (2007). Impact of a shock wave on a structure on explosion at altitude. Journal of Loss Prevention in the Process Industries, 20(4), 509-516.
Wilkening, H., & Baraldi, D. (2007). CFD modelling of accidental hydrogen release from pipelines. International Journal of Hydrogen Energy, 32(13), 2206-2215.
Yang, Y., Xie, X., & Wang, R. (2010). Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion. Journal of Rock Mechanics and Geotechnical Engineering, 2(4), 373-384.
Zhang, B. Y., Li, H. H., & Wang, W. (2015). Numerical study of dynamic response and failure analysis of spherical storage tanks under external blast loading. Journal of Loss Prevention in the Process Industries, 34, 209-217.