How to cite this paper
Kalpana, J., Rao, P & Rao, P. (2017). A review on techniques for improving the mechanical properties of fusion welded joints.Engineering Solid Mechanics, 5(4), 213-224.
Refrences
Ahmad, R., & Bakar, M. A. (2011). Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Materials & Design, 32(10), 5120-5126.
Ahmed, S. R., Agarwal, L. A., & Daniel, B. S. S. (2015). Effect of Different Post Weld Heat Treatments on the Mechanical properties of Cr-Mo Boiler Steel Welded with SMAW Process. Materials Today: Proceedings, 2(4-5), 1059-1066.
Aliha, M. R. M., & Gharehbaghi, H. (2017). The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder. Engineering Fracture Mechanics. 213-228
An, J., Meng, F., Lv, X., Liu, H., Gao, X., Wang, Y., & Lu, Y. (2012). Improvement of mechanical properties of stainless maraging steel laser weldments by post-weld ageing treatments. Materials & Design, 40, 276-284.
Badji, R., Belkessa, B., Maza, H., Bouabdllah, M., Kahloun, C. (2004). Effect of post weld heat treatment on microstructure and mechanical properties of welded 2025 duplex stainless steel. Materials science forum, 467-470, pp. 217-222.
Balasubramanian, V., Ravisankar, V., & Reddy, G. M. (2008). Effect of pulsed current welding on mechanical properties of high strength aluminum alloy. The International Journal of Advanced Manufacturing Technology, 36(3-4), 254-262.
Balasubramanian, K., Kesavan, D., & Balusamy, V. (2011). Studies on the effect of vibration on hot cracking and grain size in AA 7075 aluminum alloy welding. International Journal of Engineering Science and Technology, 3(1).
Bates, P. J., Mah, J. C., Zou, X. P., Wang, C. Y., & Baylis, B. (2004). Vibration welding air intake manifolds from reinforced nylon 66, nylon 6 and polypropylene. Composites part A: applied science and manufacturing, 35(9), 1107-1116.
Boonstra, M., Pizzi, A., Ganne-Chedeville, C., Properzi, M., Leban, J. M., & Pichelin, F. (2006). Vibration welding of heat-treated wood. Journal of Adhesion Acience and Technology, 20(4), 359-369.
Dai, X., Zhang, H., Liu, J., & Feng, J. (2015). Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding. Materials & Design, 77, 65-71.
Ding, J. K., Wang, D. P., Ying, W. A. N. G., & Hui, D. U. (2014). Effect of post weld heat treatment on properties of variable polarity TIG welded AA2219 aluminium alloy joints. Transactions of Nonferrous Metals Society of China, 24(5), 1307-1316.
Dryga, A. I. (2002). Influence of vibratory stabilizing treatment on decrease in residual stresses. Tyazheloe Mashinostroenie(Russia), 11, 30-32.
Gomes, A. J. M., Jorge, J. C. F., de Souza, L. F. G., & Bott, I. S. (2013). Influence of Chemical Composition and Post Welding Heat Treatment on the Microstructure and Mechanical Properties of High Strength Steel Weld Metals. In Materials Science Forum (Vol. 758, pp. 21-32). Trans Tech Publications.
Hsieh, C. C., Wang, P. S., Wang, J. S., & Wu, W. (2014). Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds. The Scientific World Journal, 2014.
Ibrahim, T., Yawas, D. S., & Aku, S. Y. (2013). Effects of gas metal arc welding techniques on the mechanical properties of duplex stainless steel. Journal of minerals and materials Characterization and Engineering, 1(05), 222.
Jandali, G., & Mallick, P. K. (2005). Vibration welding of a unidirectional continuous glass fiber reinforced polypropylene GMT. Composites Part A: Applied Science and Manufacturing, 36(12), 1687-1693.
Kalpana, J., & Rao, P. (2017). Effect of vibratory welding process on hardness of dissimilar welded joints. Engineering Solid Mechanics, 5(2), 133-138.
Kalpana, J., Ramana, S. V., Rao, P. G., ChittiBabu, V., & Santa Rao, K. (2013). Implementation of Generalized Regression Neural Network to Establish a Relation between Vibration Parameters and Time of Vibration for Welded Joints. IOSR Jouranl of Mechanical and Civil Engineering, 6(4), 36-42.
Kalpana, J., Rao, P. S., & Rao, P. G. (2016). Effect of frequency on impact strength of dissimilar weldments produced with vibration. International Journal of Chemical Sciences, 14(3).
Kalpana, J., Rao, P. S., & Rao, P. G. (2017). Investigation of Acceleration Effect on the Flexural Strength of Vibratory Dissimilar Welded Joints. Materials Focus, 6(2), 107-113.
Kinugawa, J., Monma, Y., Hongo, H., Yamazaki, M., & Watanabe, T. (1992). Creep Behaviour of 304 Stainless Steel Welded Joints Composed of Two Different 308 Weld Metals. In Mechanical Effects of Welding (pp. 231-238). Springer, Berlin, Heidelberg.
Kuo, C. W., Lin, C. M., Lai, G. H., Chen, Y. C., Chang, Y. T., & Wu, W. (2007). Characterization and mechanism of 304 stainless steel vibration welding. Materials transactions, 48(9), 2319-2323.
Leo, P., Renna, G., Casalino, G., & Olabi, A. G. (2015). Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Optics & Laser Technology, 73, 118-126.
Li, C., & Liu, L. (2013). Investigation on weldability of magnesium alloy thin sheet T-joints: arc welding, laser welding, and laser-arc hybrid welding. The International Journal of Advanced Manufacturing Technology, 65(1-4), 27-34.
Lu, Q., Chen, L., & Ni, C. (2007a). Improving welded valve quality by vibratory weld conditioning. Materials Science and Engineering: A, 457(1), 246-253.
Lu, Q., Chen, L., and Ni, C. (2007b). Analysis of performance and microstructure of A105 steel welded joint under vibratory weld conditioning. ZhongguoJixieGongcheng/China Mechanical Engineering, 18(20), 2497-2501.
Lu, Q., Rao, D., Zhu, Z., and Chen, L. (2005). Influence of vibration on mechanical properties of electroslag weld joint. Preceedings of the International Conference on Mechanical Engineering and Mechanics, 2.
Lu, Q., Rao, D., Zhu, Z., Chen, L., & Ni, C. (2006). Experimental study on mechanical properties of welded joint using vibratory conditioning technology. Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering), 42, 219-222.
Manikandan, M., Arivazhagan, N., Rao, M. N., & Reddy, G. M. (2014). Microstructure and mechanical properties of alloy C-276 weldments fabricated by continuous and pulsed current gas tungsten arc welding techniques. Journal of Manufacturing processes, 16(4), 563-572.
Mao, J. W., LÜ, W. J., Wang, L. Q., Zhang, D., & Qin, J. N. (2014). Microstructure and mechanical properties of GTA weldments of titanium matrix composites prepared with or without current pulsing. Transactions of Nonferrous Metals Society of China, 24(5), 1393-1399.
Mostafapour, A., & Gholizadeh, V. (2014). Experimental investigation of the effect of vibration on mechanical properties of 304 stainless steel welded parts. The International Journal of Advanced Manufacturing Technology, 70(5-8), 1113-1124.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (1999). Vibratory weld conditioning—the effect of rigid body motion vibration during welding. Strain, 35(4), 139-143.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2000). Vibratory weld conditioning: treatment of specimens during cooling. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 214(3), 129-138.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2001a). Modification of residual stress by post-weld vibration. Materials Science and technology, 17(5), 601-605.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2001b). The effect of vibratory stress on the welding microstructure and residual stress distribution. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 215(2), 99-111.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2001c). Vibratory stress relief—an investigation of the torsional stress effect in welded shafts. The Journal of Strain Analysis for Engineering Design, 36(5), 453-464.
Prakash, J., Tewari, S. P., & Srivastava, B. K. (2010). A review on solidification and change in mechanical properties under vibratory welding condition. International Journal of Engineering Science and Tehnology, 2(4).
Qinghua, L., Ligong, C., & Chunzhen, N. (2008). Effect of vibratory weld conditioning on welded valve properties. Mechanics of Materials, 40(7), 565-574.
Ramakrishna, G., Kumar, C. A., Rao, P. G., & Raman, D. S. (2012). A Finite Element Based Analysis of Residual Stresses of Welded Joint Through Mechanical Vibrations. In International conference on Advanced research in Mechanical engineering, 18th November.
Ramakrishna, G., Kumar, C. A., Rao, P. G., Chittibabu, V., & Ramana, S. V. (2013). Finite Element Analysis Of Residual Stresses In Welded Joints Prepared Under The Influence Of Mechanical Vibrations. In International Conference on Latest Trends in engineering and Technology (ICLTET) during 27th April.
Ramakrishna, G., Rao, P. S., & Rao, P. G. (2016). Methods To Improve Mechanical Properties of Welded Joints: View Point. International Journal of Mechanical Engineering and Technology, 7(6), 309-314.
Rao, D. L., CHEN, L. G., NI, C. Z., & ZHU, Z. Q. (2005). The mechanism for vibratory stress relief of stainless steel. TRANSACTIONS-CHINA WELDING INSTITUTION, 26(9), 58.
Rao, D., Wang, D., Chen, L., & Ni, C. (2007). The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress. International Journal of Fatigue, 29(1), 192-196.
Rao, M. V., Rao, P. S., & Babu, B. S. (2016). Investigate the Influence of Mechanical Vibrations on the Hardness of Al5052 Weldments. Indian Journal of Science and Technology, 9(39).
Rao, P. G., Prasad, C. L. V. R. S. V., Ramana, S. V., & Sreeramulu, D. (2013a). Development of GRNN based tool for hardness measurement of homogeneous welded joint under vibratory weld condition. International Journal of Advanced Research in Engineering and Technology, 4(4), 50-9.
Rao, P. G., Rao, P. S., & Deepak, B. B. V. L. (2017a). GRNN-Immune Based Strategy for Estimating and Optimizing the Vibratory Assisted Welding Parameters to Produce Quality Welded Joints. Engineering Journal, 21(3), 251-267.
Rao, P. G., Rao, P. S., & Gopala Krishna, A. (2017b). A smart prediction tool for estimating the impact strength of welded joints prepared by vibratory welding process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(2), 343-346.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2014a). Impact strength improvement of butt welded joints prepared by vibratory welding process. Journal of Manufacturing Technology Research, 6(3/4), 143.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2014b). Review on residual stresses in welded joints prepared under the influence of mechanical vibrations. Journal of Manufacturing Technology Research, 6(1/2), 33.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2015a). Evaluation of bending strength of the vibratory welded joint using regression technique. International Journal of Offshore and Polar Engineering, 25(03), 227-230.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2015b). Flexural strength improvement of welded joints prepared by vibratory welding process. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 5(4), 1-16.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2015c). Mechanical properties improvement of weldments using vibratory welding system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(5), 776-784.
Rao, P. G., Rao, P. S., Krishna, A. G., & Sriram, C. V. (2013b). Improvement of tensile strength of a butt welded joints prepared by vibratory welding process. International Journal of Mechanical Engineering and Technology. 4(2), 53-61.
Raveendra, A., & Kumar, B. R. (2013). Experimental study on Pulsed and Non-Pulsed Current TIG Welding of Stainless Steel sheet (SS304). International Journal of Innovative Research in Science, Engineering and Technology, 2(6).
Ravikumar, B.V.R., Krishna Sai, B.L.N., and Rajashekhar, S. (2014).Evaluation of mechanical properties of AA6068-T6 Aluminium alloy using pulse & non-pulse current GTAW process. International Journal of Innovative Research in Science Engineering and Technology, 3(12), 18136-18146.
Sawanishi, C., Ogura, T., Taniguchi, K., Ikeda, R., Oi, K., Yasuda, K., & Hirose, A. (2014). Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern. Science and Technology of Welding and Joining, 19(1), 52-59.
Shibata, K., Sakamoto, H., & Iwase, T. (2006). Laser-MIG hybrid welding of aluminium alloys. Welding in the World, 50(1-2), 28-34.
Smith, C., Pistorius, P. G. H., & Wannenburg, J. (1997). The effect of a long post weld heat treatment on the integrity of a welded joint in a pressure vessel steel. International journal of pressure vessels and piping, 70(3), 183-195.
Sun, M. C., Sun, Y. H., & Wang, R. K. (2004). The vibratory stress relief of a marine shafting of 35# bar steel. Materials Letters, 58(3), 299-303.
Sun, M. C., Sun, Y. H., & Wang, R. K. (2004). Vibratory stress relieving of welded sheet steels of low alloy high strength steel. Materials Letters, 58(7), 1396-1399.
Suresh, B. V., Rao, P. G., Musalaiah, G., & Rao, P. S. (2017). Influence of Vibratory Weld Conditioning on Hardness of Lap Welded Joints. International Journal of Mechanical Engineering and Technology (IJMET), 8(1), 169-177.
Teng, F., Zhu, Z.-Q., Chen, G., and Ni, Z. (2006). Vibratory submerged arc welding technology. HanjieXuebao/Transactions of the China Welding Institution, 27(5), 109-112.
Tucker, B., Bates, P. J., Tucker, R., & Sidiropolous, V. (2004). Improving vibration weld joint strength through process and equipment modifications. Science and technology of Welding and Joining, 9(5), 443-450.
Varga, J., Ehrenstein, G. W., & Schlarb, A. K. (2008). Vibration welding of alpha and beta isotactic polypropylenes: mechanical properties and structure. Express Polymer Letters, 2(3), 148-156.
Węglowska, A., & Pietras, A. (2012). Influence of the welding parameters on the structure and mechanical properties of vibration welded joints of dissimilar grades of nylons. Archives of Civil and Mechanical Engineering, 12(2), 198-204.
Xu, J. J., Chen, L. G., & Ni, C. Z. (2006). Effects of vibratory weld conditioning on residual stresses and transverse contraction distortions in multipass welding. Science and Technology of Welding and Joining, 11(4), 374-378.
Xu, J., Chen, L., & Ni, C. (2007). Effect of vibratory weld conditioning on the residual stresses and distortion in multipass girth-butt welded pipes. International Journal of Pressure vessels and piping, 84(5), 298-303.
Yang, Y. P., Jung, G., & Yancey, R. (2005, May). Finite element modeling of vibration stress relief after welding. In Proceedings of the 7th International Conference on Trends in Welding Research, Pine Mountain, Georgia.
Zhu, Z. Q., Chen, L. G., Rao, D. L., Ni, C. Z., Lu, L. X., & Xu, L. X. (2005). Experimental study on electro-slag weld of blast furnace steel using vibratory conditioning technology [J]. Transactions of The China Welding Institution, 2, 017.
Zhu, Z. Y., Deng, C. Y., Wang, Y., Yang, Z. W., Ding, J. K., & Wang, D. P. (2015). Effect of post weld heat treatment on the microstructure and corrosion behavior of AA2219 aluminum alloy joints welded by variable polarity tungsten inert gas welding. Materials & Design (1980-2015), 65, 1075-1082.
Zhu, Z., Chen, L., Rao, D. & Ni, C. (2004). Study on the improvement of electro-slag weld joint properties using vibratory conditioning technology. ZhongguoJixieGongcheng/China Mechanical Engineering, 15(22), 2051-2054.
Ahmed, S. R., Agarwal, L. A., & Daniel, B. S. S. (2015). Effect of Different Post Weld Heat Treatments on the Mechanical properties of Cr-Mo Boiler Steel Welded with SMAW Process. Materials Today: Proceedings, 2(4-5), 1059-1066.
Aliha, M. R. M., & Gharehbaghi, H. (2017). The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder. Engineering Fracture Mechanics. 213-228
An, J., Meng, F., Lv, X., Liu, H., Gao, X., Wang, Y., & Lu, Y. (2012). Improvement of mechanical properties of stainless maraging steel laser weldments by post-weld ageing treatments. Materials & Design, 40, 276-284.
Badji, R., Belkessa, B., Maza, H., Bouabdllah, M., Kahloun, C. (2004). Effect of post weld heat treatment on microstructure and mechanical properties of welded 2025 duplex stainless steel. Materials science forum, 467-470, pp. 217-222.
Balasubramanian, V., Ravisankar, V., & Reddy, G. M. (2008). Effect of pulsed current welding on mechanical properties of high strength aluminum alloy. The International Journal of Advanced Manufacturing Technology, 36(3-4), 254-262.
Balasubramanian, K., Kesavan, D., & Balusamy, V. (2011). Studies on the effect of vibration on hot cracking and grain size in AA 7075 aluminum alloy welding. International Journal of Engineering Science and Technology, 3(1).
Bates, P. J., Mah, J. C., Zou, X. P., Wang, C. Y., & Baylis, B. (2004). Vibration welding air intake manifolds from reinforced nylon 66, nylon 6 and polypropylene. Composites part A: applied science and manufacturing, 35(9), 1107-1116.
Boonstra, M., Pizzi, A., Ganne-Chedeville, C., Properzi, M., Leban, J. M., & Pichelin, F. (2006). Vibration welding of heat-treated wood. Journal of Adhesion Acience and Technology, 20(4), 359-369.
Dai, X., Zhang, H., Liu, J., & Feng, J. (2015). Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding. Materials & Design, 77, 65-71.
Ding, J. K., Wang, D. P., Ying, W. A. N. G., & Hui, D. U. (2014). Effect of post weld heat treatment on properties of variable polarity TIG welded AA2219 aluminium alloy joints. Transactions of Nonferrous Metals Society of China, 24(5), 1307-1316.
Dryga, A. I. (2002). Influence of vibratory stabilizing treatment on decrease in residual stresses. Tyazheloe Mashinostroenie(Russia), 11, 30-32.
Gomes, A. J. M., Jorge, J. C. F., de Souza, L. F. G., & Bott, I. S. (2013). Influence of Chemical Composition and Post Welding Heat Treatment on the Microstructure and Mechanical Properties of High Strength Steel Weld Metals. In Materials Science Forum (Vol. 758, pp. 21-32). Trans Tech Publications.
Hsieh, C. C., Wang, P. S., Wang, J. S., & Wu, W. (2014). Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds. The Scientific World Journal, 2014.
Ibrahim, T., Yawas, D. S., & Aku, S. Y. (2013). Effects of gas metal arc welding techniques on the mechanical properties of duplex stainless steel. Journal of minerals and materials Characterization and Engineering, 1(05), 222.
Jandali, G., & Mallick, P. K. (2005). Vibration welding of a unidirectional continuous glass fiber reinforced polypropylene GMT. Composites Part A: Applied Science and Manufacturing, 36(12), 1687-1693.
Kalpana, J., & Rao, P. (2017). Effect of vibratory welding process on hardness of dissimilar welded joints. Engineering Solid Mechanics, 5(2), 133-138.
Kalpana, J., Ramana, S. V., Rao, P. G., ChittiBabu, V., & Santa Rao, K. (2013). Implementation of Generalized Regression Neural Network to Establish a Relation between Vibration Parameters and Time of Vibration for Welded Joints. IOSR Jouranl of Mechanical and Civil Engineering, 6(4), 36-42.
Kalpana, J., Rao, P. S., & Rao, P. G. (2016). Effect of frequency on impact strength of dissimilar weldments produced with vibration. International Journal of Chemical Sciences, 14(3).
Kalpana, J., Rao, P. S., & Rao, P. G. (2017). Investigation of Acceleration Effect on the Flexural Strength of Vibratory Dissimilar Welded Joints. Materials Focus, 6(2), 107-113.
Kinugawa, J., Monma, Y., Hongo, H., Yamazaki, M., & Watanabe, T. (1992). Creep Behaviour of 304 Stainless Steel Welded Joints Composed of Two Different 308 Weld Metals. In Mechanical Effects of Welding (pp. 231-238). Springer, Berlin, Heidelberg.
Kuo, C. W., Lin, C. M., Lai, G. H., Chen, Y. C., Chang, Y. T., & Wu, W. (2007). Characterization and mechanism of 304 stainless steel vibration welding. Materials transactions, 48(9), 2319-2323.
Leo, P., Renna, G., Casalino, G., & Olabi, A. G. (2015). Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Optics & Laser Technology, 73, 118-126.
Li, C., & Liu, L. (2013). Investigation on weldability of magnesium alloy thin sheet T-joints: arc welding, laser welding, and laser-arc hybrid welding. The International Journal of Advanced Manufacturing Technology, 65(1-4), 27-34.
Lu, Q., Chen, L., & Ni, C. (2007a). Improving welded valve quality by vibratory weld conditioning. Materials Science and Engineering: A, 457(1), 246-253.
Lu, Q., Chen, L., and Ni, C. (2007b). Analysis of performance and microstructure of A105 steel welded joint under vibratory weld conditioning. ZhongguoJixieGongcheng/China Mechanical Engineering, 18(20), 2497-2501.
Lu, Q., Rao, D., Zhu, Z., and Chen, L. (2005). Influence of vibration on mechanical properties of electroslag weld joint. Preceedings of the International Conference on Mechanical Engineering and Mechanics, 2.
Lu, Q., Rao, D., Zhu, Z., Chen, L., & Ni, C. (2006). Experimental study on mechanical properties of welded joint using vibratory conditioning technology. Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering), 42, 219-222.
Manikandan, M., Arivazhagan, N., Rao, M. N., & Reddy, G. M. (2014). Microstructure and mechanical properties of alloy C-276 weldments fabricated by continuous and pulsed current gas tungsten arc welding techniques. Journal of Manufacturing processes, 16(4), 563-572.
Mao, J. W., LÜ, W. J., Wang, L. Q., Zhang, D., & Qin, J. N. (2014). Microstructure and mechanical properties of GTA weldments of titanium matrix composites prepared with or without current pulsing. Transactions of Nonferrous Metals Society of China, 24(5), 1393-1399.
Mostafapour, A., & Gholizadeh, V. (2014). Experimental investigation of the effect of vibration on mechanical properties of 304 stainless steel welded parts. The International Journal of Advanced Manufacturing Technology, 70(5-8), 1113-1124.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (1999). Vibratory weld conditioning—the effect of rigid body motion vibration during welding. Strain, 35(4), 139-143.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2000). Vibratory weld conditioning: treatment of specimens during cooling. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 214(3), 129-138.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2001a). Modification of residual stress by post-weld vibration. Materials Science and technology, 17(5), 601-605.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2001b). The effect of vibratory stress on the welding microstructure and residual stress distribution. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 215(2), 99-111.
Munsi, A. S. M. Y., Waddell, A. J., & Walker, C. A. (2001c). Vibratory stress relief—an investigation of the torsional stress effect in welded shafts. The Journal of Strain Analysis for Engineering Design, 36(5), 453-464.
Prakash, J., Tewari, S. P., & Srivastava, B. K. (2010). A review on solidification and change in mechanical properties under vibratory welding condition. International Journal of Engineering Science and Tehnology, 2(4).
Qinghua, L., Ligong, C., & Chunzhen, N. (2008). Effect of vibratory weld conditioning on welded valve properties. Mechanics of Materials, 40(7), 565-574.
Ramakrishna, G., Kumar, C. A., Rao, P. G., & Raman, D. S. (2012). A Finite Element Based Analysis of Residual Stresses of Welded Joint Through Mechanical Vibrations. In International conference on Advanced research in Mechanical engineering, 18th November.
Ramakrishna, G., Kumar, C. A., Rao, P. G., Chittibabu, V., & Ramana, S. V. (2013). Finite Element Analysis Of Residual Stresses In Welded Joints Prepared Under The Influence Of Mechanical Vibrations. In International Conference on Latest Trends in engineering and Technology (ICLTET) during 27th April.
Ramakrishna, G., Rao, P. S., & Rao, P. G. (2016). Methods To Improve Mechanical Properties of Welded Joints: View Point. International Journal of Mechanical Engineering and Technology, 7(6), 309-314.
Rao, D. L., CHEN, L. G., NI, C. Z., & ZHU, Z. Q. (2005). The mechanism for vibratory stress relief of stainless steel. TRANSACTIONS-CHINA WELDING INSTITUTION, 26(9), 58.
Rao, D., Wang, D., Chen, L., & Ni, C. (2007). The effectiveness evaluation of 314L stainless steel vibratory stress relief by dynamic stress. International Journal of Fatigue, 29(1), 192-196.
Rao, M. V., Rao, P. S., & Babu, B. S. (2016). Investigate the Influence of Mechanical Vibrations on the Hardness of Al5052 Weldments. Indian Journal of Science and Technology, 9(39).
Rao, P. G., Prasad, C. L. V. R. S. V., Ramana, S. V., & Sreeramulu, D. (2013a). Development of GRNN based tool for hardness measurement of homogeneous welded joint under vibratory weld condition. International Journal of Advanced Research in Engineering and Technology, 4(4), 50-9.
Rao, P. G., Rao, P. S., & Deepak, B. B. V. L. (2017a). GRNN-Immune Based Strategy for Estimating and Optimizing the Vibratory Assisted Welding Parameters to Produce Quality Welded Joints. Engineering Journal, 21(3), 251-267.
Rao, P. G., Rao, P. S., & Gopala Krishna, A. (2017b). A smart prediction tool for estimating the impact strength of welded joints prepared by vibratory welding process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(2), 343-346.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2014a). Impact strength improvement of butt welded joints prepared by vibratory welding process. Journal of Manufacturing Technology Research, 6(3/4), 143.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2014b). Review on residual stresses in welded joints prepared under the influence of mechanical vibrations. Journal of Manufacturing Technology Research, 6(1/2), 33.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2015a). Evaluation of bending strength of the vibratory welded joint using regression technique. International Journal of Offshore and Polar Engineering, 25(03), 227-230.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2015b). Flexural strength improvement of welded joints prepared by vibratory welding process. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 5(4), 1-16.
Rao, P. G., Rao, P. S., & Krishna, A. G. (2015c). Mechanical properties improvement of weldments using vibratory welding system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(5), 776-784.
Rao, P. G., Rao, P. S., Krishna, A. G., & Sriram, C. V. (2013b). Improvement of tensile strength of a butt welded joints prepared by vibratory welding process. International Journal of Mechanical Engineering and Technology. 4(2), 53-61.
Raveendra, A., & Kumar, B. R. (2013). Experimental study on Pulsed and Non-Pulsed Current TIG Welding of Stainless Steel sheet (SS304). International Journal of Innovative Research in Science, Engineering and Technology, 2(6).
Ravikumar, B.V.R., Krishna Sai, B.L.N., and Rajashekhar, S. (2014).Evaluation of mechanical properties of AA6068-T6 Aluminium alloy using pulse & non-pulse current GTAW process. International Journal of Innovative Research in Science Engineering and Technology, 3(12), 18136-18146.
Sawanishi, C., Ogura, T., Taniguchi, K., Ikeda, R., Oi, K., Yasuda, K., & Hirose, A. (2014). Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern. Science and Technology of Welding and Joining, 19(1), 52-59.
Shibata, K., Sakamoto, H., & Iwase, T. (2006). Laser-MIG hybrid welding of aluminium alloys. Welding in the World, 50(1-2), 28-34.
Smith, C., Pistorius, P. G. H., & Wannenburg, J. (1997). The effect of a long post weld heat treatment on the integrity of a welded joint in a pressure vessel steel. International journal of pressure vessels and piping, 70(3), 183-195.
Sun, M. C., Sun, Y. H., & Wang, R. K. (2004). The vibratory stress relief of a marine shafting of 35# bar steel. Materials Letters, 58(3), 299-303.
Sun, M. C., Sun, Y. H., & Wang, R. K. (2004). Vibratory stress relieving of welded sheet steels of low alloy high strength steel. Materials Letters, 58(7), 1396-1399.
Suresh, B. V., Rao, P. G., Musalaiah, G., & Rao, P. S. (2017). Influence of Vibratory Weld Conditioning on Hardness of Lap Welded Joints. International Journal of Mechanical Engineering and Technology (IJMET), 8(1), 169-177.
Teng, F., Zhu, Z.-Q., Chen, G., and Ni, Z. (2006). Vibratory submerged arc welding technology. HanjieXuebao/Transactions of the China Welding Institution, 27(5), 109-112.
Tucker, B., Bates, P. J., Tucker, R., & Sidiropolous, V. (2004). Improving vibration weld joint strength through process and equipment modifications. Science and technology of Welding and Joining, 9(5), 443-450.
Varga, J., Ehrenstein, G. W., & Schlarb, A. K. (2008). Vibration welding of alpha and beta isotactic polypropylenes: mechanical properties and structure. Express Polymer Letters, 2(3), 148-156.
Węglowska, A., & Pietras, A. (2012). Influence of the welding parameters on the structure and mechanical properties of vibration welded joints of dissimilar grades of nylons. Archives of Civil and Mechanical Engineering, 12(2), 198-204.
Xu, J. J., Chen, L. G., & Ni, C. Z. (2006). Effects of vibratory weld conditioning on residual stresses and transverse contraction distortions in multipass welding. Science and Technology of Welding and Joining, 11(4), 374-378.
Xu, J., Chen, L., & Ni, C. (2007). Effect of vibratory weld conditioning on the residual stresses and distortion in multipass girth-butt welded pipes. International Journal of Pressure vessels and piping, 84(5), 298-303.
Yang, Y. P., Jung, G., & Yancey, R. (2005, May). Finite element modeling of vibration stress relief after welding. In Proceedings of the 7th International Conference on Trends in Welding Research, Pine Mountain, Georgia.
Zhu, Z. Q., Chen, L. G., Rao, D. L., Ni, C. Z., Lu, L. X., & Xu, L. X. (2005). Experimental study on electro-slag weld of blast furnace steel using vibratory conditioning technology [J]. Transactions of The China Welding Institution, 2, 017.
Zhu, Z. Y., Deng, C. Y., Wang, Y., Yang, Z. W., Ding, J. K., & Wang, D. P. (2015). Effect of post weld heat treatment on the microstructure and corrosion behavior of AA2219 aluminum alloy joints welded by variable polarity tungsten inert gas welding. Materials & Design (1980-2015), 65, 1075-1082.
Zhu, Z., Chen, L., Rao, D. & Ni, C. (2004). Study on the improvement of electro-slag weld joint properties using vibratory conditioning technology. ZhongguoJixieGongcheng/China Mechanical Engineering, 15(22), 2051-2054.