How to cite this paper
Kundu, J & Singh, H. (2017). Friction stir welding process: An investigation of microstructure and mechanical properties of Al Alloy AlMg4.5Mn joint.Engineering Solid Mechanics, 5(2), 145-154.
Refrences
Akbari, M., Khalkhali, A., Keshavarz, S. M. E., & Sarikhani, E. (2016a). The effect of in-process cooling conditions on temperature, force, wear resistance, microstructural, and mechanical properties of friction stir processed A356. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 1464420716630569.
Akbari, M., Aliha, M. R. M., Keshavarz, S. M. E., & Bonyadi, A. (2016b). Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1464420716681591.
Aliha, M. R. M., Shahheidari, M., Bisadi, M., Akbari, M., & Hossain, S. (2016). Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique. The International Journal of Advanced Manufacturing Technology, 86(9-12), 2551-2565.
Aliha, M. R M., Fotouhi, Y., & Berto, F. (2017). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405416688935.
Baffari, D., Buffa, G., Campanella, D., Fratini, L., & Micari, F. (2014). Friction based solid state welding techniques for transportation industry applications. Procedia CIRP, 18, 162-167.
Burford, D., Britos, P. G., Boldsaikhan, E., & Brown, J. (2010, May). Evaluation of friction stir weld process and properties for aerospace application: e-NDE for friction stir processes. In 6th annual technical review meeting, FAA Joint Advanced Materials & Structures (JAMS).
Cavaliere, P., De Santis, A., Panella, F., & Squillace, A. (2009). Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design, 30(3), 609-616.
Cavaliere, P., Squillace, A., & Panella, F. (2008). Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding. Journal of Materials Processing Technology, 200(1), 364-372.
Colegrove, P. A., Shercliff, H. R., & Zettler, R. (2007). Model for predicting heat generation and temperature in friction stir welding from the material properties. Science and Technology of Welding and Joining, 12(4), 284-297.
Deepandurai, K., & Parameshwaran, R. (2016). Multiresponse Optimization of FSW Parameters for Cast AA7075/SiCp Composite. Materials and Manufacturing Processes, 31(10), 1333-1341.
Gibson, B. T., Lammlein, D. H., Prater, T. J., Longhurst, W. R., Cox, C. D., Ballun, M. C., ... & Strauss, A. M. (2014). Friction stir welding: process, automation, and control. Journal of Manufacturing Processes, 16(1), 56-73.
Koumoulos, E. P., Charitidis, C. A., Daniolos, N. M., & Pantelis, D. I. (2011). Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Materials Science and Engineering: B, 176(19), 1585-1589.
Khorrami, M. S., Kazeminezhad, M., & Kokabi, A. H. (2012). Microstructure evolutions after friction stir welding of severely deformed aluminum sheets. Materials & Design, 40, 364-372.
Kundu, J., & Singh, H. (2016). Friction stir welding of dissimilar Al alloys: effect of process parameters on mechanical properties. Engineering Solid Mechanics, 4(3), 125-132.
Kuram, E., & Ozcelik, B. (2013). Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement, 46(6), 1849-1864.
Liu, H. J., Zhou, L., & Liu, Q. W. (2010). Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Materials & Design, 31(3), 1650-1655.
Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R., & Miller, W. S. (2000). Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering: A, 280(1), 102-107.
Pantelis, D. I., Karakizis, P. N., Daniolos, N. M., Charitidis, C. A., Koumoulos, E. P., & Dragatogiannis, D. A. (2016). Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Materials and Manufacturing Processes, 31(3), 264-274.
Patel, V. V., Badheka, V., & Kumar, A. (2016). Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Materials and Manufacturing Processes, 31(12), 1573-1582.
Peel, M., Steuwer, A., Preuss, M., & Withers, P. J. (2003). Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia, 51(16), 4791-4801.
Praveen, P., & Yarlagadda, P. K. D. V. (2005). Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding. Journal of Materials Processing Technology, 164, 1106-1112.
Rao, D., Huber, K., Heerens, J., Dos Santos, J. F., & Huber, N. (2013). Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints. Materials Science and Engineering: A, 565, 44-50.
Raju, L. S., & Kumar, A. (2014). Influence of Al 2 O 3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Defence Technology, 10(4), 375-383.
Sidhu, M. S., & Chatha, S. S. (2012). Friction stir welding–process and its variables: a review. International Journal of Emerging Technology and Advanced Engineering, 2(12), 275-279.
Shojaeefard, M. H., Behnagh, R. A., Akbari, M., Givi, M. K. B., & Farhani, F. (2013). Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, 190-198.
Song, K. H., Kim, W. Y., & Nakata, K. (2012). Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400. Materials & Design, 35, 126-132.
Steuwer, A., Peel, M. J., & Withers, P. J. (2006). Dissimilar friction stir welds in AA5083–AA6082: the effect of process parameters on residual stress. Materials Science and Engineering: A, 441(1), 187-196.
Shultz, E. F., Fehrenbacher, A., Pfefferkorn, F. E., Zinn, M. R., & Ferrier, N. J. (2013). Shared control of robotic friction stir welding in the presence of imperfect joint fit-up. Journal of Manufacturing Processes, 15(1), 25-33.
Verma, S., & Misra, J. (2015). A Critical Review of Friction Stir Welding Process. DAAAM International Scientific Book, 249-266.
Vijay, S. J., & Murugan, N. (2010). Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10wt.% TiB 2 metal matrix composite. Materials & Design, 31(7), 3585-3589.
Kevorkijan, V. (2002). Economic benefits of the substitution of traditional cast iron and steel by aluminum and magnesium based materials in automotive segment. Metalurgija, 8(3), 251-258.
Xu, W., Liu, J., Luan, G., & Dong, C. (2009). Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Materials & Design, 30(6), 1886-1893.
Xu, W. F., Liu, J. H., Chen, D. L., Luan, G. H., & Yao, J. S. (2012). Improvements of strength and ductility in aluminum alloy joints via rapid cooling during friction stir welding. Materials Science and Engineering: A, 548, 89-98.
Xu, W., Liu, J., Zhu, H., & Fu, L. (2013). Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy. Materials & Design, 47, 599-606.
Yang, S., Zhang, D., Tuo, W., & Yu, Z. (2014). Microstructures and properties of extruded Al-0.6 Mg-0.6 Si aluminium alloy for high-speed vehicle. Procedia Engineering, 81, 598-603.
Yuan, W., Mishra, R. S., Carlson, B., Verma, R., & Mishra, R. K. (2012). Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy. Materials Science and Engineering: A, 543, 200-209.
Akbari, M., Aliha, M. R. M., Keshavarz, S. M. E., & Bonyadi, A. (2016b). Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1464420716681591.
Aliha, M. R. M., Shahheidari, M., Bisadi, M., Akbari, M., & Hossain, S. (2016). Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique. The International Journal of Advanced Manufacturing Technology, 86(9-12), 2551-2565.
Aliha, M. R M., Fotouhi, Y., & Berto, F. (2017). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405416688935.
Baffari, D., Buffa, G., Campanella, D., Fratini, L., & Micari, F. (2014). Friction based solid state welding techniques for transportation industry applications. Procedia CIRP, 18, 162-167.
Burford, D., Britos, P. G., Boldsaikhan, E., & Brown, J. (2010, May). Evaluation of friction stir weld process and properties for aerospace application: e-NDE for friction stir processes. In 6th annual technical review meeting, FAA Joint Advanced Materials & Structures (JAMS).
Cavaliere, P., De Santis, A., Panella, F., & Squillace, A. (2009). Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design, 30(3), 609-616.
Cavaliere, P., Squillace, A., & Panella, F. (2008). Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding. Journal of Materials Processing Technology, 200(1), 364-372.
Colegrove, P. A., Shercliff, H. R., & Zettler, R. (2007). Model for predicting heat generation and temperature in friction stir welding from the material properties. Science and Technology of Welding and Joining, 12(4), 284-297.
Deepandurai, K., & Parameshwaran, R. (2016). Multiresponse Optimization of FSW Parameters for Cast AA7075/SiCp Composite. Materials and Manufacturing Processes, 31(10), 1333-1341.
Gibson, B. T., Lammlein, D. H., Prater, T. J., Longhurst, W. R., Cox, C. D., Ballun, M. C., ... & Strauss, A. M. (2014). Friction stir welding: process, automation, and control. Journal of Manufacturing Processes, 16(1), 56-73.
Koumoulos, E. P., Charitidis, C. A., Daniolos, N. M., & Pantelis, D. I. (2011). Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Materials Science and Engineering: B, 176(19), 1585-1589.
Khorrami, M. S., Kazeminezhad, M., & Kokabi, A. H. (2012). Microstructure evolutions after friction stir welding of severely deformed aluminum sheets. Materials & Design, 40, 364-372.
Kundu, J., & Singh, H. (2016). Friction stir welding of dissimilar Al alloys: effect of process parameters on mechanical properties. Engineering Solid Mechanics, 4(3), 125-132.
Kuram, E., & Ozcelik, B. (2013). Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement, 46(6), 1849-1864.
Liu, H. J., Zhou, L., & Liu, Q. W. (2010). Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Materials & Design, 31(3), 1650-1655.
Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R., & Miller, W. S. (2000). Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering: A, 280(1), 102-107.
Pantelis, D. I., Karakizis, P. N., Daniolos, N. M., Charitidis, C. A., Koumoulos, E. P., & Dragatogiannis, D. A. (2016). Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Materials and Manufacturing Processes, 31(3), 264-274.
Patel, V. V., Badheka, V., & Kumar, A. (2016). Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Materials and Manufacturing Processes, 31(12), 1573-1582.
Peel, M., Steuwer, A., Preuss, M., & Withers, P. J. (2003). Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia, 51(16), 4791-4801.
Praveen, P., & Yarlagadda, P. K. D. V. (2005). Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding. Journal of Materials Processing Technology, 164, 1106-1112.
Rao, D., Huber, K., Heerens, J., Dos Santos, J. F., & Huber, N. (2013). Asymmetric mechanical properties and tensile behaviour prediction of aluminium alloy 5083 friction stir welding joints. Materials Science and Engineering: A, 565, 44-50.
Raju, L. S., & Kumar, A. (2014). Influence of Al 2 O 3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Defence Technology, 10(4), 375-383.
Sidhu, M. S., & Chatha, S. S. (2012). Friction stir welding–process and its variables: a review. International Journal of Emerging Technology and Advanced Engineering, 2(12), 275-279.
Shojaeefard, M. H., Behnagh, R. A., Akbari, M., Givi, M. K. B., & Farhani, F. (2013). Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, 190-198.
Song, K. H., Kim, W. Y., & Nakata, K. (2012). Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400. Materials & Design, 35, 126-132.
Steuwer, A., Peel, M. J., & Withers, P. J. (2006). Dissimilar friction stir welds in AA5083–AA6082: the effect of process parameters on residual stress. Materials Science and Engineering: A, 441(1), 187-196.
Shultz, E. F., Fehrenbacher, A., Pfefferkorn, F. E., Zinn, M. R., & Ferrier, N. J. (2013). Shared control of robotic friction stir welding in the presence of imperfect joint fit-up. Journal of Manufacturing Processes, 15(1), 25-33.
Verma, S., & Misra, J. (2015). A Critical Review of Friction Stir Welding Process. DAAAM International Scientific Book, 249-266.
Vijay, S. J., & Murugan, N. (2010). Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10wt.% TiB 2 metal matrix composite. Materials & Design, 31(7), 3585-3589.
Kevorkijan, V. (2002). Economic benefits of the substitution of traditional cast iron and steel by aluminum and magnesium based materials in automotive segment. Metalurgija, 8(3), 251-258.
Xu, W., Liu, J., Luan, G., & Dong, C. (2009). Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Materials & Design, 30(6), 1886-1893.
Xu, W. F., Liu, J. H., Chen, D. L., Luan, G. H., & Yao, J. S. (2012). Improvements of strength and ductility in aluminum alloy joints via rapid cooling during friction stir welding. Materials Science and Engineering: A, 548, 89-98.
Xu, W., Liu, J., Zhu, H., & Fu, L. (2013). Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy. Materials & Design, 47, 599-606.
Yang, S., Zhang, D., Tuo, W., & Yu, Z. (2014). Microstructures and properties of extruded Al-0.6 Mg-0.6 Si aluminium alloy for high-speed vehicle. Procedia Engineering, 81, 598-603.
Yuan, W., Mishra, R. S., Carlson, B., Verma, R., & Mishra, R. K. (2012). Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy. Materials Science and Engineering: A, 543, 200-209.