How to cite this paper
Ayatollahi, M., Berto, F., Campagnolo, A., Gallo, P & Tang, K. (2017). Review of local strain energy density theory for the fracture assessment of V-notches under mixed mode loading.Engineering Solid Mechanics, 5(2), 113-132.
Refrences
Akbardoost, J. (2014). Size and crack length effects on fracture toughness of polycrystalline graphite. Engineering Solid Mechanics, 2(3), 183-192.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Allard, B., Rouby, D., Fantozzi, G., Dumas, D., & Lacroix, P. (1991). Fracture behaviour of carbon materials. Carbon, 29(3), 457-468.
Aliha, M. R. M., & Ayatollahi, M. R. (2008). On mixed-mode I/II crack growth in dental resin materials. Scripta Materialia, 59(2), 258-261.
Aliha, M. R. M., & Ayatollahi, M. R. (2011). Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Procedia Engineering, 10, 311-318.
Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115-123.
Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock mechanics and rock engineering, 45(1), 65-74.
Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015a). Determination of mode III fracture toughness for different materials using a new designed test configuration. Materials & Design, 86, 863-871.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015b). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Berto, F., Bahmani, A., Akhondi, S., & Barnoush, A. (2016a). Fracture assessment of polymethyl methacrylate using sharp notched disc bend specimens under mixed mode I+ III loading. Physical Mesomechanics, 19(4), 355-364.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016b). A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures, 90, 167-177.
Awaji H., Sato, S. (1978). Combined Mode Fracture Toigliess measurement by the Disk Test. Journal of Engineering Materials and Technology, 100, 175.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). Mixed mode fracture analysis of polycrystalline graphite–a modified MTS criterion. Carbon, 46(10), 1302-1308.
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.
Ayatollahi, M. R., & Torabi, A. R. (2010). Tensile fracture in notched polycrystalline graphite specimens. Carbon, 48(8), 2255-2265.
Ayatollahi, M. R., Berto, F., & Lazzarin, P. (2011a). Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite. Carbon, 49(7), 2465-2474.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011b). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Bahmani, A., Aliha, M. R. M., & Berto, F. (2017). Investigation of fracture toughness for a polycrystalline graphite under combined tensile-tear deformation. Theoretical and Applied Fracture Mechanics. http://dx.doi.org/10.1016/j.tafmec.2017.02.011.
Bazaj, D. K., & Cox, E. E. (1969). Stress-concentration factors and notch-sensitivity of graphite. Carbon, 7(6), 689IN11691-690697.
Bell, J.F. (1973). Encyclopedia of Physics, Springer Verlag.
Beltrami, E. (1885). Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento (1877-1894), 18(1), 145-155.
Berto, F., Lazzarin, P., & Radaj, D. (2009). Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor for different failure hypotheses: Part II: Microstructural support analysis. Engineering Fracture Mechanics, 76(9), 1151-1175.
Berto, F., Lazzarin, P., & Ayatollahi, M. R. (2012a). Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading. Carbon, 50(5), 1942-1952.
Berto, F., Lazzarin, P., & Marangon, C. (2012b). Brittle fracture of U-notched graphite plates under mixed mode loading. Materials & Design, 41, 421-432.
Berto, F., Lazzarin, P., & Ayatollahi, M. R. (2013a). Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading. Carbon, 63, 101-116.
Berto, F., Campagnolo, A., Elices, M., & Lazzarin, P. (2013b). A synthesis of polymethylmethacrylate data from U-notched specimens and V-notches with end holes by means of local energy. Materials & Design, 49, 826-833.
Berto, F., & Lazzarin, P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Materials Science and Engineering: R: Reports, 75, 1-48.
Berto, F., Lazzarin, P., & Gallo, P. (2014a). High-temperature fatigue strength of a copper–cobalt–beryllium alloy. The Journal of Strain Analysis for Engineering Design, 49(4), 244-256.
Berto, F., Gallo, P., & Lazzarin, P. (2014b). High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13. 9 steel. Materials & Design, 63, 609-619.
Berto, F., Lazzarin, P., & Marangon, C. (2014c). Fatigue strength of notched specimens made of 40CrMoV13. 9 under multiaxial loading. Materials & Design, 54, 57-66.
Berto, F., Campagnolo, A., & Lazzarin, P. (2015). Fatigue strength of severely notched specimens made of Ti–6Al–4V under multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 38(5), 503-517.
Brighenti, R., & Carpinteri, A. (2013). Surface cracks in fatigued structural components: a review. Fatigue & Fracture of Engineering Materials & Structures, 36(12), 1209-1222.
Brighenti, R., Carpinteri, A., & Spagnoli, A. (2014). Influence of material microvoids and heterogeneities on fatigue crack propagation. Acta Mechanica, 225(11), 3123.
Brighenti, R., & Carpinteri, A. (2010). Some considerations on failure of solids and liquids. Strength of materials, 42(2), 154-166.
Brighenti, R., & Carpinteri, A. (2011). Buckling and fracture behaviour of cracked thin plates under shear loading. Materials & Design, 32(3), 1347-1355.
Brighenti, R., Carpinteri, A., & Vantadori, S. (2012a). Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics. Fatigue & Fracture of Engineering Materials & Structures, 35(2), 141-153.
Brighenti, R., & Carpinteri, A. (2012b). A notch multiaxial-fatigue approach based on damage mechanics. International Journal of Fatigue, 39, 122-133.
Burchell, T. D. (1996). A microstructurally based fracture model for polygranular graphites. Carbon, 34(3), 297-316.
Carpinteri, A., Ronchei, C., & Vantadori, S. (2013). Stress intensity factors and fatigue growth of surface cracks in notched shells and round bars: two decades of research work. Fatigue & Fracture of Engineering Materials & Structures, 36(11), 1164-1177.
Campagnolo, A., Berto, F., & Lazzarin, P. (2015). The effects of different boundary conditions on three-dimensional cracked discs under anti-plane loading. European Journal of Mechanics-A/Solids, 50, 76-86.
Cotterell, B. (1972). Brittle fracture in compression. International Journal of Fracture Mechanics, 8(2), 195-208.
D'Alia, F. S. (1958). Teoria della plasticità e sue applicazioni. G. Denaro.
Dzik, E. J., & Lajtai, E. Z. (1996). Primary fracture propagation from circular cavities loaded in compression. International journal of fracture, 79(1), 49-64.
Etter, T., Kuebler, J., Frey, T., Schulz, P., Löffler, J. F., & Uggowitzer, P. J. (2004). Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process. Materials Science and Engineering: A, 386(1), 61-67.
Greenstreet, W. L. (1968). MECHANICAL PROPERTIES OF ARTIFICIAL GRAPHITES. A Survey Report (No. ORNL--4327). Oak Ridge National Lab., Tenn..
Greenstreet, W. L., Smith, J. E., & Yahr, G. T. (1969). Mechanical properties of EGCR-type AGOT graphite. Carbon, 7(1), 15IN1325-24IN1445.
Gómez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2007). Local strain energy to assess the static failure of U-notches in plates under mixed mode loading. International Journal of Fracture, 145(1), 29-45.
Berto, F., Lazzarin, P., Gómez, F. J., & Elices, M. (2007). Fracture assessment of U-notches under mixed mode loading: two procedures based on the ‘equivalent local mode I’concept. International Journal of Fracture, 148(4), 415.
Hoek, E., & Bieniawski, Z. T. (1965). Brittle fracture propagation in rock under compression. International Journal of Fracture Mechanics, 1(3), 137-155.
Jurf, R. A., & Pipes, R. B. (1982). Interlaminar fracture of composite materials. Journal of Composite Materials, 16(5), 386-394.
Kawakami, H. (1987). Notch sensitivity of graphite materials for VHTR (No. JAERI-M--86-192).
Knibbs, R. H. (1967). Fracture in polycrystalline graphite. Journal of Nuclear Materials, 24(2), 174-187.
Latella, B. A., & Liu, T. (2006). The initiation and propagation of thermal shock cracks in graphite. Carbon, 44(14), 3043-3048.
Lajtai, E. Z. (1974). Brittle fracture in compression. International Journal of Fracture, 10(4), 525-536.
Lajtai, E. Z., Carter, B. J., & Ayari, M. L. (1990). Criteria for brittle fracture in compression. Engineering Fracture Mechanics, 37(1), 59-74.
Lazzarin, P., Berto, F., & Ayatollahi, M. R. (2013). Brittle failure of inclined key‐hole notches in isostatic graphite under in‐plane mixed mode loading. Fatigue & Fracture of Engineering Materials & Structures, 36(9), 942-955.
Lazzarin, P., & Zambardi, R. (2001). A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. International journal of fracture, 112(3), 275-298.
Lazzarin, P., & Berto, F. (2005). Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches. International Journal of Fracture, 135(1-4), 161-185.
Lazzarin, P., Campagnolo, A., & Berto, F. (2014). A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading. Theoretical and Applied Fracture Mechanics, 71, 21-30.
Lazzarin, P., Livieri, P., Berto, F., & Zappalorto, M. (2008). Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Engineering fracture mechanics, 75(7), 1875-1889.
Lazzarin, P., Berto, F., & Zappalorto, M. (2010). Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications. International Journal of Fatigue, 32(10), 1559-1567.
Li, M., Tsujimura, M., & Sakai, M. (1999). Crack-face grain interlocking/bridging of a polycrystalline graphite: The role in mixed mode fracture. Carbon, 37(10), 1633-1639.
Lomakin, E. V., Zobnin, A. I., & Berezin, A. V. (1975). Finding the fracture toughness characteristics of graphite materials in plane strain. Strength of Materials, 7(4), 484-487.
Losty, J.S.O. H.H.W. (1962). The Strength of Graphite", in: Fifth Conf. Carbon, Pennsylvania State University, Macmillan.
Mirsayar, M. M., Berto, F., Aliha, M. R. M., & Park, P. (2016). Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Engineering Fracture Mechanics, 156, 114-123.
Mostafavi, M., & Marrow, T. J. (2011). In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading. Engineering Fracture Mechanics, 78(8), 1756-1770.
Mostafavi, M., & Marrow, T. J. (2012). Quantitative in situ study of short crack propagation in polygranular graphite by digital image correlation. Fatigue & Fracture of Engineering Materials & Structures, 35(8), 695-707.
Mostafavi, M., Schmidt, M. J. J., Marsden, B. J., & Marrow, T. J. (2012). Fracture behaviour of an anisotropic polygranular graphite (PGA). Materials Science and Engineering: A, 558, 265-277.
Mostafavi, M., McDonald, S. A., Mummery, P. M., & Marrow, T. J. (2013). Observation and quantification of three-dimensional crack propagation in poly-granular graphite. Engineering Fracture Mechanics, 110, 410-420.
Mostafavi, M., McDonald, S. A., Çetinel, H., Mummery, P. M., & Marrow, T. J. (2013). Flexural strength and defect behaviour of polygranular graphite under different states of stress. Carbon, 59, 325-336.
Nemeth, N. N., & Bratton, R. L. (2011). Statistical models of fracture relevant to nuclear-grade graphite: review and recommendations.
Pook, L. P., Berto, F., Campagnolo, A., & Lazzarin, P. (2014). Coupled fracture mode of a cracked disc under anti-plane loading. Engineering Fracture Mechanics, 128, 22-36.
Raju, K. R. (1981). Effect of depth of side grooves in double torsion specimens on plane strain fracture toughness. International Journal of Fracture, 17(6), R189-R190.
Radaj, D., Berto, F., & Lazzarin, P. (2009). Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches. Engineering Fracture Mechanics, 76(8), 1109-1130.
Sato, S., Kawamata, K., Awaji, H., Osawa, M., & Manaka, M. (1981). Thermal shock resistance and fracture toughness during the graphitization process. Carbon, 19(2), 111-118.
Sato, S., Awaji, H., & Akuzawa, H. (1978). Fracture toughness of reactor graphite at high temperature. Carbon, 16(2), 95-102.
Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of fracture, 10(3), 305-321.
Shi, L., Li, H., Zou, Z., Fok, A. S., Marsden, B. J., Hodgkins, A., ... & Marrow, J. (2008). Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens. Journal of Nuclear Materials, 372(2), 141-151.
Schleicher, F. V. (1926). Der Spannungszustand an der Fliessgrenze (Plastizitätsbedingung). ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 6(3), 199-216.
Stassi, F. (1951). Un paraboloide di rivoluzioni quale condizione di Plasticita. L'Ingegnere.
Torabi, A. R., Campagnolo, A., & Berto, F. (2014). Mode II brittle fracture assessment of key-hole notches by means of the local energy. Journal of Testing and Evaluation, 44(3), 1261-1270.
Vantadori, S., Carpinteri, A., & Scorza, D. (2013). Simplified analysis of fracture behaviour of a Francis hydraulic turbine runner blade. Fatigue & Fracture of Engineering Materials & Structures, 36(7), 679-688.
Vardoulakis, I., Labuz, J. F., Papamichos, E., & Tronvoll, J. (1998). Continuum fracture mechanics of uniaxial compression on brittle materials. International journal of solids and structures, 35(31-32), 4313-4335.
Wang, E. Z., & Shrive, N. G. (1995). Brittle fracture in compression: mechanisms, models and criteria. Engineering fracture mechanics, 52(6), 1107-1126.
Wang, J. A. J., & Liu, K. C. (2008). An innovative technique for evaluating fracture toughness of graphite materials. Journal of Nuclear Materials, 381(1), 177-184.
Wosu, S. N., Hui, D., & Dutta, P. K. (2005). Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites. Engineering Fracture Mechanics, 72(10), 1531-1558.
Yamauchi, Y., Nakano, M., Kishida, K., & Okabe, T. (2001). Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen. JOURNAL-SOCIETY OF MATERIALS SCIENCE JAPAN, 50, 229-234.
Yamauchi, Y., Nakano, M., Kishida, K., & Okabe, T. (2000). Measurement of fracture toughness for brittle materials under mixed-mode impact loading using center-notched disk specimen. Journal of the Society of Materials Science, Japan(Japan), 49(12), 1324-1329.
Yum, Y. J., & You, H. (2001). Pure mode I, II and mixed mode interlaminar fracture of graphite/epoxy composite materials. Journal of reinforced plastics and composites, 20(9), 794-808.
Zheng, X., Zhao, K., Wang, H., & Yan, J. (2003). Failure criterion with given survivability for ceramic notched elements under combined tension/torsion. Materials Science and Engineering: A, 357(1), 196-202.
Zheng, X. L., Zhao, K., & Yan, J. H. (2005). Fracture and strength of notched elements of brittle material under torsion. Materials science and technology, 21(5), 539-545.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Allard, B., Rouby, D., Fantozzi, G., Dumas, D., & Lacroix, P. (1991). Fracture behaviour of carbon materials. Carbon, 29(3), 457-468.
Aliha, M. R. M., & Ayatollahi, M. R. (2008). On mixed-mode I/II crack growth in dental resin materials. Scripta Materialia, 59(2), 258-261.
Aliha, M. R. M., & Ayatollahi, M. R. (2011). Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Procedia Engineering, 10, 311-318.
Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115-123.
Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock mechanics and rock engineering, 45(1), 65-74.
Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015a). Determination of mode III fracture toughness for different materials using a new designed test configuration. Materials & Design, 86, 863-871.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015b). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Berto, F., Bahmani, A., Akhondi, S., & Barnoush, A. (2016a). Fracture assessment of polymethyl methacrylate using sharp notched disc bend specimens under mixed mode I+ III loading. Physical Mesomechanics, 19(4), 355-364.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016b). A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures, 90, 167-177.
Awaji H., Sato, S. (1978). Combined Mode Fracture Toigliess measurement by the Disk Test. Journal of Engineering Materials and Technology, 100, 175.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). Mixed mode fracture analysis of polycrystalline graphite–a modified MTS criterion. Carbon, 46(10), 1302-1308.
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.
Ayatollahi, M. R., & Torabi, A. R. (2010). Tensile fracture in notched polycrystalline graphite specimens. Carbon, 48(8), 2255-2265.
Ayatollahi, M. R., Berto, F., & Lazzarin, P. (2011a). Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite. Carbon, 49(7), 2465-2474.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011b). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Bahmani, A., Aliha, M. R. M., & Berto, F. (2017). Investigation of fracture toughness for a polycrystalline graphite under combined tensile-tear deformation. Theoretical and Applied Fracture Mechanics. http://dx.doi.org/10.1016/j.tafmec.2017.02.011.
Bazaj, D. K., & Cox, E. E. (1969). Stress-concentration factors and notch-sensitivity of graphite. Carbon, 7(6), 689IN11691-690697.
Bell, J.F. (1973). Encyclopedia of Physics, Springer Verlag.
Beltrami, E. (1885). Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento (1877-1894), 18(1), 145-155.
Berto, F., Lazzarin, P., & Radaj, D. (2009). Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the microstructural support factor for different failure hypotheses: Part II: Microstructural support analysis. Engineering Fracture Mechanics, 76(9), 1151-1175.
Berto, F., Lazzarin, P., & Ayatollahi, M. R. (2012a). Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading. Carbon, 50(5), 1942-1952.
Berto, F., Lazzarin, P., & Marangon, C. (2012b). Brittle fracture of U-notched graphite plates under mixed mode loading. Materials & Design, 41, 421-432.
Berto, F., Lazzarin, P., & Ayatollahi, M. R. (2013a). Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading. Carbon, 63, 101-116.
Berto, F., Campagnolo, A., Elices, M., & Lazzarin, P. (2013b). A synthesis of polymethylmethacrylate data from U-notched specimens and V-notches with end holes by means of local energy. Materials & Design, 49, 826-833.
Berto, F., & Lazzarin, P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Materials Science and Engineering: R: Reports, 75, 1-48.
Berto, F., Lazzarin, P., & Gallo, P. (2014a). High-temperature fatigue strength of a copper–cobalt–beryllium alloy. The Journal of Strain Analysis for Engineering Design, 49(4), 244-256.
Berto, F., Gallo, P., & Lazzarin, P. (2014b). High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13. 9 steel. Materials & Design, 63, 609-619.
Berto, F., Lazzarin, P., & Marangon, C. (2014c). Fatigue strength of notched specimens made of 40CrMoV13. 9 under multiaxial loading. Materials & Design, 54, 57-66.
Berto, F., Campagnolo, A., & Lazzarin, P. (2015). Fatigue strength of severely notched specimens made of Ti–6Al–4V under multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 38(5), 503-517.
Brighenti, R., & Carpinteri, A. (2013). Surface cracks in fatigued structural components: a review. Fatigue & Fracture of Engineering Materials & Structures, 36(12), 1209-1222.
Brighenti, R., Carpinteri, A., & Spagnoli, A. (2014). Influence of material microvoids and heterogeneities on fatigue crack propagation. Acta Mechanica, 225(11), 3123.
Brighenti, R., & Carpinteri, A. (2010). Some considerations on failure of solids and liquids. Strength of materials, 42(2), 154-166.
Brighenti, R., & Carpinteri, A. (2011). Buckling and fracture behaviour of cracked thin plates under shear loading. Materials & Design, 32(3), 1347-1355.
Brighenti, R., Carpinteri, A., & Vantadori, S. (2012a). Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics. Fatigue & Fracture of Engineering Materials & Structures, 35(2), 141-153.
Brighenti, R., & Carpinteri, A. (2012b). A notch multiaxial-fatigue approach based on damage mechanics. International Journal of Fatigue, 39, 122-133.
Burchell, T. D. (1996). A microstructurally based fracture model for polygranular graphites. Carbon, 34(3), 297-316.
Carpinteri, A., Ronchei, C., & Vantadori, S. (2013). Stress intensity factors and fatigue growth of surface cracks in notched shells and round bars: two decades of research work. Fatigue & Fracture of Engineering Materials & Structures, 36(11), 1164-1177.
Campagnolo, A., Berto, F., & Lazzarin, P. (2015). The effects of different boundary conditions on three-dimensional cracked discs under anti-plane loading. European Journal of Mechanics-A/Solids, 50, 76-86.
Cotterell, B. (1972). Brittle fracture in compression. International Journal of Fracture Mechanics, 8(2), 195-208.
D'Alia, F. S. (1958). Teoria della plasticità e sue applicazioni. G. Denaro.
Dzik, E. J., & Lajtai, E. Z. (1996). Primary fracture propagation from circular cavities loaded in compression. International journal of fracture, 79(1), 49-64.
Etter, T., Kuebler, J., Frey, T., Schulz, P., Löffler, J. F., & Uggowitzer, P. J. (2004). Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process. Materials Science and Engineering: A, 386(1), 61-67.
Greenstreet, W. L. (1968). MECHANICAL PROPERTIES OF ARTIFICIAL GRAPHITES. A Survey Report (No. ORNL--4327). Oak Ridge National Lab., Tenn..
Greenstreet, W. L., Smith, J. E., & Yahr, G. T. (1969). Mechanical properties of EGCR-type AGOT graphite. Carbon, 7(1), 15IN1325-24IN1445.
Gómez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2007). Local strain energy to assess the static failure of U-notches in plates under mixed mode loading. International Journal of Fracture, 145(1), 29-45.
Berto, F., Lazzarin, P., Gómez, F. J., & Elices, M. (2007). Fracture assessment of U-notches under mixed mode loading: two procedures based on the ‘equivalent local mode I’concept. International Journal of Fracture, 148(4), 415.
Hoek, E., & Bieniawski, Z. T. (1965). Brittle fracture propagation in rock under compression. International Journal of Fracture Mechanics, 1(3), 137-155.
Jurf, R. A., & Pipes, R. B. (1982). Interlaminar fracture of composite materials. Journal of Composite Materials, 16(5), 386-394.
Kawakami, H. (1987). Notch sensitivity of graphite materials for VHTR (No. JAERI-M--86-192).
Knibbs, R. H. (1967). Fracture in polycrystalline graphite. Journal of Nuclear Materials, 24(2), 174-187.
Latella, B. A., & Liu, T. (2006). The initiation and propagation of thermal shock cracks in graphite. Carbon, 44(14), 3043-3048.
Lajtai, E. Z. (1974). Brittle fracture in compression. International Journal of Fracture, 10(4), 525-536.
Lajtai, E. Z., Carter, B. J., & Ayari, M. L. (1990). Criteria for brittle fracture in compression. Engineering Fracture Mechanics, 37(1), 59-74.
Lazzarin, P., Berto, F., & Ayatollahi, M. R. (2013). Brittle failure of inclined key‐hole notches in isostatic graphite under in‐plane mixed mode loading. Fatigue & Fracture of Engineering Materials & Structures, 36(9), 942-955.
Lazzarin, P., & Zambardi, R. (2001). A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. International journal of fracture, 112(3), 275-298.
Lazzarin, P., & Berto, F. (2005). Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches. International Journal of Fracture, 135(1-4), 161-185.
Lazzarin, P., Campagnolo, A., & Berto, F. (2014). A comparison among some recent energy-and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading. Theoretical and Applied Fracture Mechanics, 71, 21-30.
Lazzarin, P., Livieri, P., Berto, F., & Zappalorto, M. (2008). Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading. Engineering fracture mechanics, 75(7), 1875-1889.
Lazzarin, P., Berto, F., & Zappalorto, M. (2010). Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications. International Journal of Fatigue, 32(10), 1559-1567.
Li, M., Tsujimura, M., & Sakai, M. (1999). Crack-face grain interlocking/bridging of a polycrystalline graphite: The role in mixed mode fracture. Carbon, 37(10), 1633-1639.
Lomakin, E. V., Zobnin, A. I., & Berezin, A. V. (1975). Finding the fracture toughness characteristics of graphite materials in plane strain. Strength of Materials, 7(4), 484-487.
Losty, J.S.O. H.H.W. (1962). The Strength of Graphite", in: Fifth Conf. Carbon, Pennsylvania State University, Macmillan.
Mirsayar, M. M., Berto, F., Aliha, M. R. M., & Park, P. (2016). Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Engineering Fracture Mechanics, 156, 114-123.
Mostafavi, M., & Marrow, T. J. (2011). In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading. Engineering Fracture Mechanics, 78(8), 1756-1770.
Mostafavi, M., & Marrow, T. J. (2012). Quantitative in situ study of short crack propagation in polygranular graphite by digital image correlation. Fatigue & Fracture of Engineering Materials & Structures, 35(8), 695-707.
Mostafavi, M., Schmidt, M. J. J., Marsden, B. J., & Marrow, T. J. (2012). Fracture behaviour of an anisotropic polygranular graphite (PGA). Materials Science and Engineering: A, 558, 265-277.
Mostafavi, M., McDonald, S. A., Mummery, P. M., & Marrow, T. J. (2013). Observation and quantification of three-dimensional crack propagation in poly-granular graphite. Engineering Fracture Mechanics, 110, 410-420.
Mostafavi, M., McDonald, S. A., Çetinel, H., Mummery, P. M., & Marrow, T. J. (2013). Flexural strength and defect behaviour of polygranular graphite under different states of stress. Carbon, 59, 325-336.
Nemeth, N. N., & Bratton, R. L. (2011). Statistical models of fracture relevant to nuclear-grade graphite: review and recommendations.
Pook, L. P., Berto, F., Campagnolo, A., & Lazzarin, P. (2014). Coupled fracture mode of a cracked disc under anti-plane loading. Engineering Fracture Mechanics, 128, 22-36.
Raju, K. R. (1981). Effect of depth of side grooves in double torsion specimens on plane strain fracture toughness. International Journal of Fracture, 17(6), R189-R190.
Radaj, D., Berto, F., & Lazzarin, P. (2009). Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches. Engineering Fracture Mechanics, 76(8), 1109-1130.
Sato, S., Kawamata, K., Awaji, H., Osawa, M., & Manaka, M. (1981). Thermal shock resistance and fracture toughness during the graphitization process. Carbon, 19(2), 111-118.
Sato, S., Awaji, H., & Akuzawa, H. (1978). Fracture toughness of reactor graphite at high temperature. Carbon, 16(2), 95-102.
Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of fracture, 10(3), 305-321.
Shi, L., Li, H., Zou, Z., Fok, A. S., Marsden, B. J., Hodgkins, A., ... & Marrow, J. (2008). Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens. Journal of Nuclear Materials, 372(2), 141-151.
Schleicher, F. V. (1926). Der Spannungszustand an der Fliessgrenze (Plastizitätsbedingung). ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 6(3), 199-216.
Stassi, F. (1951). Un paraboloide di rivoluzioni quale condizione di Plasticita. L'Ingegnere.
Torabi, A. R., Campagnolo, A., & Berto, F. (2014). Mode II brittle fracture assessment of key-hole notches by means of the local energy. Journal of Testing and Evaluation, 44(3), 1261-1270.
Vantadori, S., Carpinteri, A., & Scorza, D. (2013). Simplified analysis of fracture behaviour of a Francis hydraulic turbine runner blade. Fatigue & Fracture of Engineering Materials & Structures, 36(7), 679-688.
Vardoulakis, I., Labuz, J. F., Papamichos, E., & Tronvoll, J. (1998). Continuum fracture mechanics of uniaxial compression on brittle materials. International journal of solids and structures, 35(31-32), 4313-4335.
Wang, E. Z., & Shrive, N. G. (1995). Brittle fracture in compression: mechanisms, models and criteria. Engineering fracture mechanics, 52(6), 1107-1126.
Wang, J. A. J., & Liu, K. C. (2008). An innovative technique for evaluating fracture toughness of graphite materials. Journal of Nuclear Materials, 381(1), 177-184.
Wosu, S. N., Hui, D., & Dutta, P. K. (2005). Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites. Engineering Fracture Mechanics, 72(10), 1531-1558.
Yamauchi, Y., Nakano, M., Kishida, K., & Okabe, T. (2001). Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen. JOURNAL-SOCIETY OF MATERIALS SCIENCE JAPAN, 50, 229-234.
Yamauchi, Y., Nakano, M., Kishida, K., & Okabe, T. (2000). Measurement of fracture toughness for brittle materials under mixed-mode impact loading using center-notched disk specimen. Journal of the Society of Materials Science, Japan(Japan), 49(12), 1324-1329.
Yum, Y. J., & You, H. (2001). Pure mode I, II and mixed mode interlaminar fracture of graphite/epoxy composite materials. Journal of reinforced plastics and composites, 20(9), 794-808.
Zheng, X., Zhao, K., Wang, H., & Yan, J. (2003). Failure criterion with given survivability for ceramic notched elements under combined tension/torsion. Materials Science and Engineering: A, 357(1), 196-202.
Zheng, X. L., Zhao, K., & Yan, J. H. (2005). Fracture and strength of notched elements of brittle material under torsion. Materials science and technology, 21(5), 539-545.