How to cite this paper
Fayed, A. (2017). Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked plates.Engineering Solid Mechanics, 5(1), 61-70.
Refrences
ABAQUS Users, 2014, Version 6.14-1. Dassault Systémes Simulia Corp., Providence, RI.
Abd-Elhady, A. (2013). Mixed mode I/II stress intensity factors through the thickness of disc type specimens. Engineering Solid Mechanics, 1(4), 119-128.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Akbardoost, J. (2014). Size and crack length effects on fracture toughness of polycrystalline graphite. Engineering Solid Mechanics, 2(3), 183-192.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile‐shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023-1034.
Aliha, M. R. M., & Ayatollahi, M. R. (2012). Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. International Journal of Solids and Structures, 49(13), 1877-1883.
Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115-123.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015a). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015b). Determination of mode III fracture toughness for different materials using a new designed test configuration. Materials & Design, 86, 863-871.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016a). Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens. European Journal of Mechanics-A/Solids, 58, 148-162.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016b). A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures, 90, 167-177.
Arcan, M., Hashin, Z. A., & Voloshin, A. (1978). A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Experimental Mechanics, 18(4), 141-146.
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). On the use of an anti‐symmetric four‐point bend specimen for mode II fracture experiments. Fatigue & Fracture of Engineering Materials & Structures, 34(11), 898-907.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Ayhan, A. O. (2004). Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates. Engineering Fracture Mechanics, 71(7), 1059-1079.
Azlan, M. A., & Ismail, A. E. (2014). Effect of mechanical mismatch on the stress intensity factors of inclined cracks under mode I tension loading. Applied Mechanics and Materials, International Integrated Engineering Summit, 129-133
Barsoum, R. S. (1976). On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering, 10(1), 25-37.
Barsoum, R. S. (1977). Triangular quarter‐point elements as elastic and perfectly‐plastic crack tip elements. International Journal for numerical Methods in engineering, 11(1), 85-98.
Bhadauria, S. S., Pathak, K. K., & Hora, M. S. (2010). Finite element modeling of crack initiation angle under mixed mode (I/II) fracture. Journal of Solid Mechanics, 2, 231-247.
Chang, K. J. (1981). On the maximum strain criterion—a new approach to the angled crack problem. Engineering Fracture Mechanics, 14(1), 107-124.
Ewing, P. D., Swedlow, J. L., & Williams, J. G. (1976). Further results on the angled crack problem. International Journal of Fracture, 12(1), 85-93.
Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519-525.
Fayed, A. S. (2008). Size Effect of Asymmetric Four Point Bend Specimen on Crack Propagation in Ceramics. ASJCE Fac. Eng. Ain Shams Univ., Cairo, 1(1), 227-237.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2002). Mode II stress intensity factors for central slant cracks with frictional surfaces in uniaxially compressed plates. International Journal of Fatigue, 24(12), 1213-1222.
Hammouda, M. M. I., Pasha, R. A., & Fayed, A. S. (2007). Modelling of cracking sites/development in axial dovetail joints of aero-engine compressor discs. International Journal of Fatigue, 29(1), 30-48.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2004). Stress intensity factors of a central slant crack with frictional surfaces in plates with biaxial loading. International Journal of Fracture, 129(2), 141-148.
Henshell, R. D., & Shaw, K. G. (1975). Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering, 9(3), 495-507.
Hussain, M. A., Pu, S. L., & Underwood, J. (1974, January). Strain energy release rate for a crack under combined mode I and mode II. In Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International.
Kanninen, M. F., & Popelar, C. L. (1985). Advanced fracture mechanics. Newyork: Oxford University Press.
Khan, S. M., & Khraisheh, M. K. (2000). Analysis of mixed mode crack initiation angles under various loading conditions. Engineering Fracture Mechanics, 67(5), 397-419.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Mirsayar, M., & Samaei, A. (2014). Application of maximum tangential stress criterion in determination of fracture initiation angles of silicon/glass anodic bonds. Engineering Solid Mechanics, 2(3), 145-150.
Mirsayar, M. (2014). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics, 2(2), 67-72.
Mirlohi, S., & Aliha, M.R.M. (2013). Crack growth path prediction for the angled cracked plate using higher order terms of Williams series expansion. Engineering Solid Mechanics, 1(3), 77-84.
Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245-250.
Petit, C., Vergne, A., & Zhang, X. (1996). A comparative numerical review of cracked materials. Engineering Fracture Mechanics, 54(3), 423-439.
Richard, H. A., & Benitz, K. (1983). A loading device for the creation of mixed mode in fracture mechanics. international Journal of Fracture, 22(2), R55-R58.
Sih, G. C., & Macdonald, B. (1974). Fracture mechanics applied to engineering problems-strain energy density fracture criterion. Engineering Fracture Mechanics, 6(2), 361-386.
Tada, H. I. R. O. S. H. I., Paris, P. C., & Irwin, G. R. (2000). The analysis of cracks handbook. New York: ASME Press, 2, 1.
Theocaris, P. S., & Papadopoulos, G. A. (1984). The influence of geometry of edge-cracked plates on KI and KII components of the stress intensity factor, studied by caustics. Journal of Physics D: Applied Physics, 17(12), 2339-2349.
Abd-Elhady, A. (2013). Mixed mode I/II stress intensity factors through the thickness of disc type specimens. Engineering Solid Mechanics, 1(4), 119-128.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Akbardoost, J. (2014). Size and crack length effects on fracture toughness of polycrystalline graphite. Engineering Solid Mechanics, 2(3), 183-192.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile‐shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mechanics and Rock Engineering, 46(5), 1023-1034.
Aliha, M. R. M., & Ayatollahi, M. R. (2012). Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. International Journal of Solids and Structures, 49(13), 1877-1883.
Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115-123.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015a). Numerical analysis of a new mixed mode I/III fracture test specimen. Engineering Fracture Mechanics, 134, 95-110.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2015b). Determination of mode III fracture toughness for different materials using a new designed test configuration. Materials & Design, 86, 863-871.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016a). Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens. European Journal of Mechanics-A/Solids, 58, 148-162.
Aliha, M. R. M., Bahmani, A., & Akhondi, S. (2016b). A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study. International Journal of Solids and Structures, 90, 167-177.
Arcan, M., Hashin, Z. A., & Voloshin, A. (1978). A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Experimental Mechanics, 18(4), 141-146.
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). On the use of an anti‐symmetric four‐point bend specimen for mode II fracture experiments. Fatigue & Fracture of Engineering Materials & Structures, 34(11), 898-907.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Ayhan, A. O. (2004). Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates. Engineering Fracture Mechanics, 71(7), 1059-1079.
Azlan, M. A., & Ismail, A. E. (2014). Effect of mechanical mismatch on the stress intensity factors of inclined cracks under mode I tension loading. Applied Mechanics and Materials, International Integrated Engineering Summit, 129-133
Barsoum, R. S. (1976). On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in Engineering, 10(1), 25-37.
Barsoum, R. S. (1977). Triangular quarter‐point elements as elastic and perfectly‐plastic crack tip elements. International Journal for numerical Methods in engineering, 11(1), 85-98.
Bhadauria, S. S., Pathak, K. K., & Hora, M. S. (2010). Finite element modeling of crack initiation angle under mixed mode (I/II) fracture. Journal of Solid Mechanics, 2, 231-247.
Chang, K. J. (1981). On the maximum strain criterion—a new approach to the angled crack problem. Engineering Fracture Mechanics, 14(1), 107-124.
Ewing, P. D., Swedlow, J. L., & Williams, J. G. (1976). Further results on the angled crack problem. International Journal of Fracture, 12(1), 85-93.
Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519-525.
Fayed, A. S. (2008). Size Effect of Asymmetric Four Point Bend Specimen on Crack Propagation in Ceramics. ASJCE Fac. Eng. Ain Shams Univ., Cairo, 1(1), 227-237.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2002). Mode II stress intensity factors for central slant cracks with frictional surfaces in uniaxially compressed plates. International Journal of Fatigue, 24(12), 1213-1222.
Hammouda, M. M. I., Pasha, R. A., & Fayed, A. S. (2007). Modelling of cracking sites/development in axial dovetail joints of aero-engine compressor discs. International Journal of Fatigue, 29(1), 30-48.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2004). Stress intensity factors of a central slant crack with frictional surfaces in plates with biaxial loading. International Journal of Fracture, 129(2), 141-148.
Henshell, R. D., & Shaw, K. G. (1975). Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering, 9(3), 495-507.
Hussain, M. A., Pu, S. L., & Underwood, J. (1974, January). Strain energy release rate for a crack under combined mode I and mode II. In Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International.
Kanninen, M. F., & Popelar, C. L. (1985). Advanced fracture mechanics. Newyork: Oxford University Press.
Khan, S. M., & Khraisheh, M. K. (2000). Analysis of mixed mode crack initiation angles under various loading conditions. Engineering Fracture Mechanics, 67(5), 397-419.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Mirsayar, M., & Samaei, A. (2014). Application of maximum tangential stress criterion in determination of fracture initiation angles of silicon/glass anodic bonds. Engineering Solid Mechanics, 2(3), 145-150.
Mirsayar, M. (2014). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics, 2(2), 67-72.
Mirlohi, S., & Aliha, M.R.M. (2013). Crack growth path prediction for the angled cracked plate using higher order terms of Williams series expansion. Engineering Solid Mechanics, 1(3), 77-84.
Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245-250.
Petit, C., Vergne, A., & Zhang, X. (1996). A comparative numerical review of cracked materials. Engineering Fracture Mechanics, 54(3), 423-439.
Richard, H. A., & Benitz, K. (1983). A loading device for the creation of mixed mode in fracture mechanics. international Journal of Fracture, 22(2), R55-R58.
Sih, G. C., & Macdonald, B. (1974). Fracture mechanics applied to engineering problems-strain energy density fracture criterion. Engineering Fracture Mechanics, 6(2), 361-386.
Tada, H. I. R. O. S. H. I., Paris, P. C., & Irwin, G. R. (2000). The analysis of cracks handbook. New York: ASME Press, 2, 1.
Theocaris, P. S., & Papadopoulos, G. A. (1984). The influence of geometry of edge-cracked plates on KI and KII components of the stress intensity factor, studied by caustics. Journal of Physics D: Applied Physics, 17(12), 2339-2349.