How to cite this paper
Panov, D., Smirnov, A & Simonov, Y. (2016). High-speed thermal-cycle processing of low-carbon steel in the initially hardened and initially cold-deformed condition.Engineering Solid Mechanics, 4(3), 133-144.
Refrences
Bojack, A., Zhao, L., Morris, P. F., & Sietsma, J. (2012). In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Materials Characterization, 71, 77-86.
Chang, M., & Yu, H. (2013). Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel. International Journal of Minerals, Metallurgy, and Materials, 20(5), 427-432.
Dillon, S. J., Tang, M., Carter, W. C., & Harmer, M. P. (2007). Complexion: A new concept for kinetic engineering in materials science. Acta Materialia,55(18), 6208-6218.
Gladstein, L.I., Rivanenok, T.N., & Christov, A.V. (2008). Dilatometric analysis of the kinetics of polymorphic transformation during heating of steel. Plant Laboratory. Diagnosis of materials, 6, 36-39.
Hall, E. O. (1951). The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B, 64(9), 747.
Huang, J., Poole, W. J., & Militzer, M. (2004). Austenite formation during intercritical annealing. Metallurgical and Materials Transactions A, 35(11), 3363-3375.
Kaputkin, D.E. (2007). Nonequilibrium conditions of structure of hardened multicomponent alloys of iron and their approach to equilibrium. Fundamental problems of modern metallurgy, 4(1), 58-65.
Kurdyumov, G. V., Utevskii, L. M., & Entin, R. I. (1977). Transformations in iron and steel.
Lee, S. J., & Lee, Y. K. (2008). Prediction of austenite grain growth during austenitization of low alloy steels. Materials & Design, 29(9), 1840-1844.
Linxiu, D. U., Shengjie, Y. A. O., Xianghua, L. I. U., & Guodong, W. A. N. G. (2009). Growth behavior of ultrafine austenite grains in microalloyed steel. Acta Metallurgica Sinica (English Letters), 22(1), 7-12.
Panov, D.O., Balakhnin, A.N., Titova, M.G., Orlova, E.N., Smirnov, A.I., & Simonov, Y.N. (2012). Evolution of the structure and properties at intensive thermal-cycle processing of cold-deformed hardened systemically alloyed steel 10H3G3MF. Metallurgy and heat treatment of metals, 11, 17-22.
Petch, N. J. (1953). The cleavage strength of polycrystals. Journal of Iron Steel Industries, 174, 25-28.
Sadowski,,V.D. (1973). Structural heredity in steel. Metallurgy, Moscow.
Schastlivtsev, V.M. & Koptseva, N.V. (1976). Electron microscopic studies of austenite during heating of constructional steel. The Physics of Metals and Metallography, 42(4), 837 – 847.
Segal, V.M. (1994). Plastic structure formation processes of metals. Science and Technology, Minsk.
Simonov, Y.N., Panov, D.O., Simonov, M.Y., Kasatkin, A.V. & Poduzov, D.P. (2013). Low-carbon alloy steel. Patent 2477333 Russian Federation.
Tokizane, M., Matsumura, N., Tsuzaki, K., Maki, T., & Tamura, I. (1982). Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels. Metallurgical and Materials Transactions A,13(8), 1379-1388.
Tyurin, V.A., Lazorkin, V.A. & Pospelov I.A. (1990). Forging on radial crimping machines. Mechanical Engineering, Moscow.
Valiev, R.Z. (2006) .Creation of nanostructured materials and alloys with unique properties using severe plastic deformations. Russian Nanotechnology. 1-2, 208-215.
Wei, R., Enomoto, M., Hadian, R., Zurob, H. S., & Purdy, G. R. (2013). Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1 C–3Mn–1.5 Si alloy. Acta Materialia, 61(2), 697-707.
Zel’dovich, V. I. (2008). Three mechanisms of formation of austenite and inheritance of structure in iron alloys. Metal Science and Heat Treatment, 50(9-10), 442-448.
Chang, M., & Yu, H. (2013). Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel. International Journal of Minerals, Metallurgy, and Materials, 20(5), 427-432.
Dillon, S. J., Tang, M., Carter, W. C., & Harmer, M. P. (2007). Complexion: A new concept for kinetic engineering in materials science. Acta Materialia,55(18), 6208-6218.
Gladstein, L.I., Rivanenok, T.N., & Christov, A.V. (2008). Dilatometric analysis of the kinetics of polymorphic transformation during heating of steel. Plant Laboratory. Diagnosis of materials, 6, 36-39.
Hall, E. O. (1951). The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B, 64(9), 747.
Huang, J., Poole, W. J., & Militzer, M. (2004). Austenite formation during intercritical annealing. Metallurgical and Materials Transactions A, 35(11), 3363-3375.
Kaputkin, D.E. (2007). Nonequilibrium conditions of structure of hardened multicomponent alloys of iron and their approach to equilibrium. Fundamental problems of modern metallurgy, 4(1), 58-65.
Kurdyumov, G. V., Utevskii, L. M., & Entin, R. I. (1977). Transformations in iron and steel.
Lee, S. J., & Lee, Y. K. (2008). Prediction of austenite grain growth during austenitization of low alloy steels. Materials & Design, 29(9), 1840-1844.
Linxiu, D. U., Shengjie, Y. A. O., Xianghua, L. I. U., & Guodong, W. A. N. G. (2009). Growth behavior of ultrafine austenite grains in microalloyed steel. Acta Metallurgica Sinica (English Letters), 22(1), 7-12.
Panov, D.O., Balakhnin, A.N., Titova, M.G., Orlova, E.N., Smirnov, A.I., & Simonov, Y.N. (2012). Evolution of the structure and properties at intensive thermal-cycle processing of cold-deformed hardened systemically alloyed steel 10H3G3MF. Metallurgy and heat treatment of metals, 11, 17-22.
Petch, N. J. (1953). The cleavage strength of polycrystals. Journal of Iron Steel Industries, 174, 25-28.
Sadowski,,V.D. (1973). Structural heredity in steel. Metallurgy, Moscow.
Schastlivtsev, V.M. & Koptseva, N.V. (1976). Electron microscopic studies of austenite during heating of constructional steel. The Physics of Metals and Metallography, 42(4), 837 – 847.
Segal, V.M. (1994). Plastic structure formation processes of metals. Science and Technology, Minsk.
Simonov, Y.N., Panov, D.O., Simonov, M.Y., Kasatkin, A.V. & Poduzov, D.P. (2013). Low-carbon alloy steel. Patent 2477333 Russian Federation.
Tokizane, M., Matsumura, N., Tsuzaki, K., Maki, T., & Tamura, I. (1982). Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels. Metallurgical and Materials Transactions A,13(8), 1379-1388.
Tyurin, V.A., Lazorkin, V.A. & Pospelov I.A. (1990). Forging on radial crimping machines. Mechanical Engineering, Moscow.
Valiev, R.Z. (2006) .Creation of nanostructured materials and alloys with unique properties using severe plastic deformations. Russian Nanotechnology. 1-2, 208-215.
Wei, R., Enomoto, M., Hadian, R., Zurob, H. S., & Purdy, G. R. (2013). Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1 C–3Mn–1.5 Si alloy. Acta Materialia, 61(2), 697-707.
Zel’dovich, V. I. (2008). Three mechanisms of formation of austenite and inheritance of structure in iron alloys. Metal Science and Heat Treatment, 50(9-10), 442-448.