How to cite this paper
Mahdavi, E., Obara, Y & Ayatollahi, M. (2015). Numerical investigation of stress intensity factor for semi-circular bend specimen with chevron notch.Engineering Solid Mechanics, 3(4), 235-244.
Refrences
Aliha, M. R. M., Sistaninia, M., Smith, D. J., Pavier, M. J., & Ayatollahi, M. R. (2012). Geometry effects and statistical analysis of mode I fracture in guiting limestone. International Journal of Rock Mechanics and Mining Sciences, 51, 128-135.
Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock Mechanics and Rock Engineering, 45(1), 65-74.
Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631-4641.
Bluhm, J. I. (1975). Slice synthesis of a three dimensional “work of fracture” specimen. Engineering Fracture Mechanics, 7(3), 593-604.
Chong, K. P., Kuruppu, M. D., & Kuszmaul, J. S. (1987). Fracture toughness determination of layered materials. Engineering fracture mechanics, 28(1), 43-54.
Cui, Z. D., Liu, D. A., An, G. M., Sun, B., Zhou, M., & Cao, F. Q. (2010). A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness. International Journal of Rock Mechanics and Mining Sciences, 47(5), 871-876.
Dai, F., Wei, M. D., Xu, N. W., Zhao, T., & Xu, Y. (2015). Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode I fracture toughness of rocks. Computers and Geotechnics, 69, 424-441.
Erarslan, N., & Williams, D. J. (2012). The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks. International Journal of Rock Mechanics and Mining Sciences, 56, 15-26.
Fowell, R. J. (1995, January). Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 32, No. 1, pp. 57-64). Pergamon.
Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 163-198.
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a Plate. Journal of Applied Mechanics, 24(1), 361-364.
Kanninen, M. F., & Popelar, C. H. (1985). Advanced fracture mechanics. Oxford Engineering Science Series (15). Oxford University Press, New York.
Kuruppu, M. D., Obara, Y., Ayatollahi, M. R., Chong, K. P., & Funatsu, T. (2015). ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014 (pp. 107-114). Springer International Publishing.
Kuruppu, M. D., & Chong, K. P. (2012). Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Engineering Fracture Mechanics, 91, 133-150.
Kuruppu, M. D. (1997). Fracture toughness measurement using chevron notched semi-circular bend specimen. International journal of fracture, 86(4), L33-L38.
Ouchterlony, F. (1988). ISRM suggested methods for determining fracture toughness of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics abstracts, 25, 71-96.
Obara, Y., Sasaki, K., & Yoshinaga, T. (2007). Estimation of fracture toughness of rocks under water vapor pressure by Semi-Circular Bend (SCB) test. Journal-Mining and Materials Processing Institute of Japan, 123(4/5), 145.
Obara, Y., Sasaki, K., Yoshinaga, T., & Suzuki, Y. (2007, July). Influence of water vapour pressure of surrounding environment on fracture toughness and crack velocity of rocks. In Proceedings of 11th congress of ISRM (Vol. 1, pp. 51-54).
Wang, Q. Z., Jia, X. M., & Wu, L. Z. (2004). Wide-range stress intensity factors for the ISRM suggested method using CCNBD specimens for rock fracture toughness tests. International journal of rock mechanics and mining sciences, 41(4), 709-716.
Wang, Q. Z. (1998). Stress intensity factors of the ISRM suggested CCNBD specimen used for mode-I fracture toughness determination. International Journal of Rock Mechanics and Mining Sciences, 35(7), 977-982.
Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock Mechanics and Rock Engineering, 45(1), 65-74.
Aliha, M. R. M., & Ayatollahi, M. R. (2014). Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach. Theoretical and Applied Fracture Mechanics, 69, 17-25.
Akbardoost, J., Ayatollahi, M. R., Aliha, M. R. M., Pavier, M. J., & Smith, D. J. (2014). Size-dependent fracture behavior of Guiting limestone under mixed mode loading. International Journal of Rock Mechanics and Mining Sciences, 71, 369-380.
Ayatollahi, M. R., & Aliha, M. R. M. (2008). On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Engineering Fracture Mechanics, 75(16), 4631-4641.
Bluhm, J. I. (1975). Slice synthesis of a three dimensional “work of fracture” specimen. Engineering Fracture Mechanics, 7(3), 593-604.
Chong, K. P., Kuruppu, M. D., & Kuszmaul, J. S. (1987). Fracture toughness determination of layered materials. Engineering fracture mechanics, 28(1), 43-54.
Cui, Z. D., Liu, D. A., An, G. M., Sun, B., Zhou, M., & Cao, F. Q. (2010). A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness. International Journal of Rock Mechanics and Mining Sciences, 47(5), 871-876.
Dai, F., Wei, M. D., Xu, N. W., Zhao, T., & Xu, Y. (2015). Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode I fracture toughness of rocks. Computers and Geotechnics, 69, 424-441.
Erarslan, N., & Williams, D. J. (2012). The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks. International Journal of Rock Mechanics and Mining Sciences, 56, 15-26.
Fowell, R. J. (1995, January). Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 32, No. 1, pp. 57-64). Pergamon.
Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 163-198.
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a Plate. Journal of Applied Mechanics, 24(1), 361-364.
Kanninen, M. F., & Popelar, C. H. (1985). Advanced fracture mechanics. Oxford Engineering Science Series (15). Oxford University Press, New York.
Kuruppu, M. D., Obara, Y., Ayatollahi, M. R., Chong, K. P., & Funatsu, T. (2015). ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014 (pp. 107-114). Springer International Publishing.
Kuruppu, M. D., & Chong, K. P. (2012). Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Engineering Fracture Mechanics, 91, 133-150.
Kuruppu, M. D. (1997). Fracture toughness measurement using chevron notched semi-circular bend specimen. International journal of fracture, 86(4), L33-L38.
Ouchterlony, F. (1988). ISRM suggested methods for determining fracture toughness of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics abstracts, 25, 71-96.
Obara, Y., Sasaki, K., & Yoshinaga, T. (2007). Estimation of fracture toughness of rocks under water vapor pressure by Semi-Circular Bend (SCB) test. Journal-Mining and Materials Processing Institute of Japan, 123(4/5), 145.
Obara, Y., Sasaki, K., Yoshinaga, T., & Suzuki, Y. (2007, July). Influence of water vapour pressure of surrounding environment on fracture toughness and crack velocity of rocks. In Proceedings of 11th congress of ISRM (Vol. 1, pp. 51-54).
Wang, Q. Z., Jia, X. M., & Wu, L. Z. (2004). Wide-range stress intensity factors for the ISRM suggested method using CCNBD specimens for rock fracture toughness tests. International journal of rock mechanics and mining sciences, 41(4), 709-716.
Wang, Q. Z. (1998). Stress intensity factors of the ISRM suggested CCNBD specimen used for mode-I fracture toughness determination. International Journal of Rock Mechanics and Mining Sciences, 35(7), 977-982.