How to cite this paper
Nikkhoo, M., Kuo, Y., Hsu, Y., Khalaf, K., Haghpanahi, M., Parnianpour, M & Wang, J. (2015). Time-dependent response of intact intervertebral disc – In Vitro and In-Silico study on the effect of loading mode and rate.Engineering Solid Mechanics, 3(1), 51-58.
Refrences
Argoubi, M., & Shirazi-Adl, A. (1996). Poroelastic creep response analysis of a lumbar motion segment in compression. Journal of biomechanics, 29(10), 1331-1339.
Beckstein, J. C., Sen, S., Schaer, T. P., Vresilovic, E. J., & Elliott, D. M. (2008). Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine, 33(6), E166-E173.
Biot, M. A. (1941). General theory of three?dimensional consolidation. Journal of applied physics, 12(2), 155-164.
Galbusera, F., Schmidt, H., Noailly, J., Malandrino, A., Lacroix, D., Wilke, H. J., & Shirazi-Adl, A. (2011). Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Journal of the mechanical behavior of biomedical materials, 4(7), 1234-1241.
Heuer, F., Schmitt, H., Schmidt, H., Claes, L., & Wilke, H. J. (2007). Creep associated changes in intervertebral disc bulging obtained with a laser scanning device. Clinical Biomechanics, 22(7), 737-744.
Kojic, M., Filipovic, N., Vulovic, S., & Mijailovic, S. (1998). A finite element solution procedure for porous medium with fluid flow and electromechanical coupling. Communications in numerical methods in engineering, 14(4), 381-392.
Kuo, Y. W., & Wang, J. L. (2010). Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine, 35(16), E743-E752.
Li, S. (1994). Response of human intervertebral discs to prolonged axial loading and low-frequency vibration. University of Illinois at Chicago
McLain, R. F., Yerby, S. A., & Moseley, T. A. (2002). Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine, 27(8), E200-E206.
Mow, V. C., Kuei, S. C., Lai, W. M., & Armstrong, C. G. (1980). Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Journal of biomechanical engineering, 102(1), 73-84.
Nikkhoo, M., Haghpanahi, M., Wang, J.L., and Parnianpour, M. (2011). Axisymmetric Poroelastic FE Modeling of Intervertebral Disc for Investigation of Lumbar Spine Biomechanics. Iranian Journal of Biomedical Engineering 5, 21-32.
Nikkhoo, M., Haghpanahi, M., Parnianpour, M., & Wang, J. L. (2013a). Dynamic responses of intervertebral disc during static creep and dynamic cyclic loading: a parametric poroelastic finite element analysis. Biomedical Engineering: Applications, Basis and Communications, 25(01).
Nikkhoo, M., Hsu, Y. C., Haghpanahi, M., Parnianpour, M., & Wang, J. L. (2013b). Material Property Identification of Artificial Degenerated Intervertebral Disc Models—Comparison of Inverse Poroelastic Finite Element Analysis with Biphasic Closed Form Solution. Journal of Mechanics, 29(04), 589-597.
Nikkhoo, M., Hsu, Y. C., Haghpanahi, M., Parnianpour, M., & Wang, J. L. (2013c). A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 0954411913480668.
Schmidt, H., Shirazi-Adl, A., Galbusera, F., & Wilke, H. J. (2010). Response analysis of the lumbar spine during regular daily activities—a finite element analysis. Journal of biomechanics, 43(10), 1849-1856.
Simon, B. R., Wu, J. S. S., Carlton, M. W., Kazarian, L. E., France, E. P., Evans, J. H., & Zienkiewicz, O. C. (1985). 1985 Volvo Award in Biomechanics: Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments. Spine, 10(6), 494-507.
Wang, J. L., Wu, T. K., Lin, T. C., Cheng, C. H., & Huang, S. C. (2008). Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine, 33(17), 1863-1869.
Williams, J. R., Natarajan, R. N., & Andersson, G. B. (2007). Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. Journal of biomechanics, 40(9), 1981-1987.
Beckstein, J. C., Sen, S., Schaer, T. P., Vresilovic, E. J., & Elliott, D. M. (2008). Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine, 33(6), E166-E173.
Biot, M. A. (1941). General theory of three?dimensional consolidation. Journal of applied physics, 12(2), 155-164.
Galbusera, F., Schmidt, H., Noailly, J., Malandrino, A., Lacroix, D., Wilke, H. J., & Shirazi-Adl, A. (2011). Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Journal of the mechanical behavior of biomedical materials, 4(7), 1234-1241.
Heuer, F., Schmitt, H., Schmidt, H., Claes, L., & Wilke, H. J. (2007). Creep associated changes in intervertebral disc bulging obtained with a laser scanning device. Clinical Biomechanics, 22(7), 737-744.
Kojic, M., Filipovic, N., Vulovic, S., & Mijailovic, S. (1998). A finite element solution procedure for porous medium with fluid flow and electromechanical coupling. Communications in numerical methods in engineering, 14(4), 381-392.
Kuo, Y. W., & Wang, J. L. (2010). Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine, 35(16), E743-E752.
Li, S. (1994). Response of human intervertebral discs to prolonged axial loading and low-frequency vibration. University of Illinois at Chicago
McLain, R. F., Yerby, S. A., & Moseley, T. A. (2002). Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine, 27(8), E200-E206.
Mow, V. C., Kuei, S. C., Lai, W. M., & Armstrong, C. G. (1980). Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Journal of biomechanical engineering, 102(1), 73-84.
Nikkhoo, M., Haghpanahi, M., Wang, J.L., and Parnianpour, M. (2011). Axisymmetric Poroelastic FE Modeling of Intervertebral Disc for Investigation of Lumbar Spine Biomechanics. Iranian Journal of Biomedical Engineering 5, 21-32.
Nikkhoo, M., Haghpanahi, M., Parnianpour, M., & Wang, J. L. (2013a). Dynamic responses of intervertebral disc during static creep and dynamic cyclic loading: a parametric poroelastic finite element analysis. Biomedical Engineering: Applications, Basis and Communications, 25(01).
Nikkhoo, M., Hsu, Y. C., Haghpanahi, M., Parnianpour, M., & Wang, J. L. (2013b). Material Property Identification of Artificial Degenerated Intervertebral Disc Models—Comparison of Inverse Poroelastic Finite Element Analysis with Biphasic Closed Form Solution. Journal of Mechanics, 29(04), 589-597.
Nikkhoo, M., Hsu, Y. C., Haghpanahi, M., Parnianpour, M., & Wang, J. L. (2013c). A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 0954411913480668.
Schmidt, H., Shirazi-Adl, A., Galbusera, F., & Wilke, H. J. (2010). Response analysis of the lumbar spine during regular daily activities—a finite element analysis. Journal of biomechanics, 43(10), 1849-1856.
Simon, B. R., Wu, J. S. S., Carlton, M. W., Kazarian, L. E., France, E. P., Evans, J. H., & Zienkiewicz, O. C. (1985). 1985 Volvo Award in Biomechanics: Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments. Spine, 10(6), 494-507.
Wang, J. L., Wu, T. K., Lin, T. C., Cheng, C. H., & Huang, S. C. (2008). Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine, 33(17), 1863-1869.
Williams, J. R., Natarajan, R. N., & Andersson, G. B. (2007). Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. Journal of biomechanics, 40(9), 1981-1987.