How to cite this paper
Talaee, M., Alizadeh, M & Bakhshandeh, S. (2014). An exact analytical solution of non-Fourier thermal stress in cylindrical shell under periodic boundary condition.Engineering Solid Mechanics, 2(4), 293-302.
Refrences
Atefi, G., & Talaee, M. R. (2011). Non-fourier temperature field in a solid homogeneous finite hollow cylinder. Archive of Applied Mechanics, 81(5), 569-583.
Bagri, A., & Eslami, M. R. (2007). A unified generalized thermoelasticity; solution for cylinders and spheres. International Journal of Mechanical Sciences, 49(12), 1325-1335.
Cattaneo, C. (1958). A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 247(4), 431-433.
Chandrasekharaiah, D. S. (1996). One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. Journal of Thermal Stresses, 19(8), 695-710.
Chandrasekharaiah, D. S. (1997). Complete solutions in the theory of thermoelasticity without energy dissipation. Mechanics Research Communications, 24(6), 625-630.
Chandrasekharaiah, D. S. (1998). Hyperbolic thermoelasticity: a review of recent literature. Applied Mechanics Reviews, 51(12), 705-729.
Chen, H. T., & Lin, H. J. (1995). Study of transient coupled thermoelastic problems with relaxation times. Journal of applied mechanics, 62(1), 208-215.
Hosseini-Tehrani, P., & Eslami, M. R. (2003). Boundary element analysis of finite domains under thermal and mechanical shock with the Lord-Shulman theory. The Journal of Strain Analysis for Engineering Design, 38(1), 53-64.
Nabavi, S. M., & Shahani, A. R. (2009). Thermal stress intensity factors for a cracked cylinder under transient thermal loading. International Journal of Pressure Vessels and Piping, 86(2), 153-163.
Nayfeh, A. H. (1977). Propagation of thermoelastic disturbances in non-Fourier solids. AIAA Journal, 15(7), 957-960.
Radu, V., Taylor, N., & Paffumi, E. (2008). Development of new analytical solutions for elastic thermal stress components in a hollow cylinder under sinusoidal transient thermal loading. International Journal of Pressure Vessels and Piping, 85(12), 885-893.
Shahani, A. R., & Nabavi, S. M. (2007). Analytical solution of the quasi-static thermoelasticity problem in a pressurized thick-walled cylinder subjected to transient thermal loading. Applied mathematical modelling, 31(9), 1807-1818.
Shen, W., & Han, S. (2002). Hyperbolic heat conduction in composite materials. tc, 2, 0.
Taheri, H., Fariborz, S., & Eslami, M. R. (2004). Thermoelasticity solution of a layer using the Green–Naghdi model. Journal of Thermal Stresses, 27(9), 795-809.
Talaee, M. R., & Atefi, G. (2011). Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Archive of Applied Mechanics, 81(12), 1793-1806.
Tehrani, P. H., & Eslami, M. R. (2000). Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA journal, 38(3), 534-541.
Vernotte, P. (1958). Les paradoxes de la théorie continue de léquation de la chaleur. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 246(22), 3154-3155.
Bagri, A., & Eslami, M. R. (2007). A unified generalized thermoelasticity; solution for cylinders and spheres. International Journal of Mechanical Sciences, 49(12), 1325-1335.
Cattaneo, C. (1958). A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 247(4), 431-433.
Chandrasekharaiah, D. S. (1996). One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. Journal of Thermal Stresses, 19(8), 695-710.
Chandrasekharaiah, D. S. (1997). Complete solutions in the theory of thermoelasticity without energy dissipation. Mechanics Research Communications, 24(6), 625-630.
Chandrasekharaiah, D. S. (1998). Hyperbolic thermoelasticity: a review of recent literature. Applied Mechanics Reviews, 51(12), 705-729.
Chen, H. T., & Lin, H. J. (1995). Study of transient coupled thermoelastic problems with relaxation times. Journal of applied mechanics, 62(1), 208-215.
Hosseini-Tehrani, P., & Eslami, M. R. (2003). Boundary element analysis of finite domains under thermal and mechanical shock with the Lord-Shulman theory. The Journal of Strain Analysis for Engineering Design, 38(1), 53-64.
Nabavi, S. M., & Shahani, A. R. (2009). Thermal stress intensity factors for a cracked cylinder under transient thermal loading. International Journal of Pressure Vessels and Piping, 86(2), 153-163.
Nayfeh, A. H. (1977). Propagation of thermoelastic disturbances in non-Fourier solids. AIAA Journal, 15(7), 957-960.
Radu, V., Taylor, N., & Paffumi, E. (2008). Development of new analytical solutions for elastic thermal stress components in a hollow cylinder under sinusoidal transient thermal loading. International Journal of Pressure Vessels and Piping, 85(12), 885-893.
Shahani, A. R., & Nabavi, S. M. (2007). Analytical solution of the quasi-static thermoelasticity problem in a pressurized thick-walled cylinder subjected to transient thermal loading. Applied mathematical modelling, 31(9), 1807-1818.
Shen, W., & Han, S. (2002). Hyperbolic heat conduction in composite materials. tc, 2, 0.
Taheri, H., Fariborz, S., & Eslami, M. R. (2004). Thermoelasticity solution of a layer using the Green–Naghdi model. Journal of Thermal Stresses, 27(9), 795-809.
Talaee, M. R., & Atefi, G. (2011). Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Archive of Applied Mechanics, 81(12), 1793-1806.
Tehrani, P. H., & Eslami, M. R. (2000). Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA journal, 38(3), 534-541.
Vernotte, P. (1958). Les paradoxes de la théorie continue de léquation de la chaleur. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 246(22), 3154-3155.