How to cite this paper
Mirsayar, M. (2014). A modified maximum tangential stress criterion for determination of the fracture toughness in bi-material notches – Part 1: Theory.Engineering Solid Mechanics, 2(4), 277-282.
Refrences
Aliha, M. R. M., & Ayatollahi, M. R. (2008). On mixed-mode I/II crack growth in dental resin materials. Scripta Materialia, 59(2), 258-261.
Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile?shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.
Aliha, M. R. M., Ayatollahi, M. R., & Pakzad, R. (2008). Brittle fracture analysis using a ring-shape specimen containing two angled cracks. International Journal of Fracture, 153(1), 63-68.
Aliha, M. R. M., & Ayatollahi, M. R. (2012). Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. International Journal of Solids and Structures, 49(13), 1877-1883.
Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock Mechanics and Rock Engineering, 45(1), 65-74.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M., & Ayatollahi, M. R. (2012). Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 93, 153-167.
Arabi, H., Mirsayar, M. M., Samaei, A. T., & Darandeh, M.(2013) Study of Characteristic Equation of the Elastic Stress Field Near Bimaterial Notches. Strength of Materials 45 (5), 598-606.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), 175-182.
Ayatollahi, M. R., & Aliha, M. R. M. (2007). Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational materials science, 38(4), 660-670.
Ayatollahi, M. R., Aliha, M. R. M., & Hassani, M. M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Materials Science and Engineering: A, 417(1), 348-356.
Ayatollahi, M. R., Dehghany, M., & Mirsayar, M. M. (2013). A comprehensive photoelastic study for mode I sharp V-notches. European Journal of Mechanics-A/Solids 37, 216-230
Ayatollahi, M. R., Mirsayar, M. M., & Nejati, M. (2010a). Evaluation of first non-singular terms in biomaterial notches. Computational Material Science, 50 (2), 752-760.
Ayatollahi, M. R., Nejati, M., Mirsayar, M. M.(2010b). An overdeterministic method for stress analysis of bi-material corners and interface cracks using finite element method, Proceedings of the 9th Conference of Iranian Aerospace Society, Tehran, Iran.
Ayatollahi, M. R., Mirsayar, M. M., & Dehghany, M. (2011). Experimental determination of stress field parameters using photoelasticity. Materials & Design, 32 (10), 4901-4908.
Ayatollahi, M. R. & Mirsayar, M. M., (2011). Kinking angle for interface cracks. Procedia Engineering 10, 325-329.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). Fracture analysis of some ceramics under mixed mode loading. Journal of the American Ceramic Society, 94(2), 561-569.
Chen, W.T., Read, D., Questad, D., & Sammakia, B., (1997). Opportunities and needs for interfacial fracture mechanics in microelectronic packaging industry. Application of Fracture Mechanics in Electronic Packaging, ASME, AMD-Vol. 222/EEP- 20, 183–192.
Dunn, M. L., Cunningham, S. J. & Labossierea, P.E.W. (2000) Initiation toughness of Silicon/ Glass anodic bonds. Acta materialia. (48), 735-744.
Klusak J., & Knesl, Z. (2007). Determination of crack initiation direction from a bi-material notch based on the strain energy density concept. Computational Materials Science 39, 214–218.
Labossierea, P.E.W., Dunn,M. L., & Cunningham,S. J. (2002). Application of bimaterial interface corner failure mechanics to silicon/ glass anodic bonds. Journal of the Mechanics and Physics of Solids, 50, 405 – 433.
Lu, T. J., Moore, D. F., & Chia, M. H. (2002). Mechanics of micromechanical clips for optical fibers, Journal of Micromechanics and Microengineering. (12) 168–176.
Mirsayar, M. M., & Samaei, A. T. (2013). Photoelastic study of bi-material notches: Effect of mismatch parameters. Engineering Solid Mechanics 1 (1), 21-26.
Mirsayar, M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics,1(4), 149-153.
Mirsayar, M. M. (2014a). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics 2 (2), 67-72.
Mirsayar, M. M. (2014b). On fracture of kinked interface cracks – The role of T-stress. Materials & Design 61, 117 – 123.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Mirsayar, M. M., & Samaei, A. T. (2014). Application of maximum tangential stress criterion in determination of fracture initiation angles of silicon/glass anodic bonds. Engineering Solid Mechanics 2 (3), 145-150.
Shetty, D. K., Rosenfield, A. R., & Duckworth, W. H. (1987). Mixed-mode fracture in biaxial stress state: application of the diametral-compression (Brazilian disk) test. Engineering Fracture Mechanics, 26(6), 825-840.
Singh, D., & Shetty, D. K. (1989). Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading. Journal of Engineering for Gas Turbines and Power, 111(1), 174-180.
Spyropoulos, C.P. (2003). Crack initiation direction from interface of bonded dissimilar media. Theoretical and Applied Fracture Mechanics. 39, 99–105.
Tikare, V., & Choi, S. R. (1997). Combined Mode I–Mode II Fracture of 12?mol%?Ceria?Doped Tetragonal Zirconia Polycrystalline Ceramic. Journal of the American Ceramic Society, 80(6), 1624-1626.
Yamauchi, Y., Nakano, M., Kishida, K., & Okabe, T. (2001). Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen. Journal of Society of Materials Science of Japan, 50, 229-234.
Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile?shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.
Aliha, M. R. M., Ayatollahi, M. R., & Pakzad, R. (2008). Brittle fracture analysis using a ring-shape specimen containing two angled cracks. International Journal of Fracture, 153(1), 63-68.
Aliha, M. R. M., & Ayatollahi, M. R. (2012). Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. International Journal of Solids and Structures, 49(13), 1877-1883.
Aliha, M. R. M., Ayatollahi, M. R., & Akbardoost, J. (2012). Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock Mechanics and Rock Engineering, 45(1), 65-74.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M., & Ayatollahi, M. R. (2012). Mixed mode fracture resistance of asphalt concrete mixtures. Engineering Fracture Mechanics, 93, 153-167.
Arabi, H., Mirsayar, M. M., Samaei, A. T., & Darandeh, M.(2013) Study of Characteristic Equation of the Elastic Stress Field Near Bimaterial Notches. Strength of Materials 45 (5), 598-606.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), 175-182.
Ayatollahi, M. R., & Aliha, M. R. M. (2007). Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Computational materials science, 38(4), 660-670.
Ayatollahi, M. R., Aliha, M. R. M., & Hassani, M. M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Materials Science and Engineering: A, 417(1), 348-356.
Ayatollahi, M. R., Dehghany, M., & Mirsayar, M. M. (2013). A comprehensive photoelastic study for mode I sharp V-notches. European Journal of Mechanics-A/Solids 37, 216-230
Ayatollahi, M. R., Mirsayar, M. M., & Nejati, M. (2010a). Evaluation of first non-singular terms in biomaterial notches. Computational Material Science, 50 (2), 752-760.
Ayatollahi, M. R., Nejati, M., Mirsayar, M. M.(2010b). An overdeterministic method for stress analysis of bi-material corners and interface cracks using finite element method, Proceedings of the 9th Conference of Iranian Aerospace Society, Tehran, Iran.
Ayatollahi, M. R., Mirsayar, M. M., & Dehghany, M. (2011). Experimental determination of stress field parameters using photoelasticity. Materials & Design, 32 (10), 4901-4908.
Ayatollahi, M. R. & Mirsayar, M. M., (2011). Kinking angle for interface cracks. Procedia Engineering 10, 325-329.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). Fracture analysis of some ceramics under mixed mode loading. Journal of the American Ceramic Society, 94(2), 561-569.
Chen, W.T., Read, D., Questad, D., & Sammakia, B., (1997). Opportunities and needs for interfacial fracture mechanics in microelectronic packaging industry. Application of Fracture Mechanics in Electronic Packaging, ASME, AMD-Vol. 222/EEP- 20, 183–192.
Dunn, M. L., Cunningham, S. J. & Labossierea, P.E.W. (2000) Initiation toughness of Silicon/ Glass anodic bonds. Acta materialia. (48), 735-744.
Klusak J., & Knesl, Z. (2007). Determination of crack initiation direction from a bi-material notch based on the strain energy density concept. Computational Materials Science 39, 214–218.
Labossierea, P.E.W., Dunn,M. L., & Cunningham,S. J. (2002). Application of bimaterial interface corner failure mechanics to silicon/ glass anodic bonds. Journal of the Mechanics and Physics of Solids, 50, 405 – 433.
Lu, T. J., Moore, D. F., & Chia, M. H. (2002). Mechanics of micromechanical clips for optical fibers, Journal of Micromechanics and Microengineering. (12) 168–176.
Mirsayar, M. M., & Samaei, A. T. (2013). Photoelastic study of bi-material notches: Effect of mismatch parameters. Engineering Solid Mechanics 1 (1), 21-26.
Mirsayar, M. (2013). Calculation of stress intensity factors for an interfacial notch of a bi-material joint using photoelasticity. Engineering Solid Mechanics,1(4), 149-153.
Mirsayar, M. M. (2014a). A new mixed mode fracture test specimen covering positive and negative values of T-stress. Engineering Solid Mechanics 2 (2), 67-72.
Mirsayar, M. M. (2014b). On fracture of kinked interface cracks – The role of T-stress. Materials & Design 61, 117 – 123.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Mirsayar, M. M., & Samaei, A. T. (2014). Application of maximum tangential stress criterion in determination of fracture initiation angles of silicon/glass anodic bonds. Engineering Solid Mechanics 2 (3), 145-150.
Shetty, D. K., Rosenfield, A. R., & Duckworth, W. H. (1987). Mixed-mode fracture in biaxial stress state: application of the diametral-compression (Brazilian disk) test. Engineering Fracture Mechanics, 26(6), 825-840.
Singh, D., & Shetty, D. K. (1989). Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading. Journal of Engineering for Gas Turbines and Power, 111(1), 174-180.
Spyropoulos, C.P. (2003). Crack initiation direction from interface of bonded dissimilar media. Theoretical and Applied Fracture Mechanics. 39, 99–105.
Tikare, V., & Choi, S. R. (1997). Combined Mode I–Mode II Fracture of 12?mol%?Ceria?Doped Tetragonal Zirconia Polycrystalline Ceramic. Journal of the American Ceramic Society, 80(6), 1624-1626.
Yamauchi, Y., Nakano, M., Kishida, K., & Okabe, T. (2001). Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen. Journal of Society of Materials Science of Japan, 50, 229-234.