How to cite this paper
Vimal, J., Srivastava, R., Bhatt, A & Sharma, A. (2014). Free vibration analysis of moderately thick functionally graded skew plates.Engineering Solid Mechanics, 2(3), 229-238.
Refrences
Bao, G., & Wang, L. (1995). Multiple cracking in functionally graded ceramic/metal coatings. International Journal of Solids and Structures, 32(19), 2853-2871.
Boay, C. G. (1996). Free vibration of laminated composite plates with a central circular hole. Composite structures, 35(4), 357-368.
Efraim, E., & Eisenberger, M. (2007). Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. Journal of Sound and Vibration, 299(4), 720-738.
Frostig, Y., & Shenhar, Y. (1995). High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins. Composites Engineering, 5(4), 405-414.
Fukui, Y., & Yamanaka, N. (1992). Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure. JSME international journal. Ser. 1, Solid mechanics, strength of materials, 35(4), 379-385.
Fukui, Y., Yamanaka, N., & Wakashima, K. (1993). The stresses and strains in a thick-walled tube for functionally graded material under uniform thermal loading. JSME international journal. Series A, mechanics and material engineering, 36(2), 156-162.
Huang, X. L., & Shen, H. S. (2004). Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures, 41(9), 2403-2427.
Matsunaga, H. (2008). Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite structures, 82(4), 499-512.
Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C. M. C., Jorge, R. M. N., & Soares, C. M. M. (2013). Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, 44(1), 657-674.
Reddy, J. N. (1997). Mechanics of laminated composite plates: theory and analysis (Vol. 1, pp. 95-154). Boca Raton: CRC press.
Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1-3), 663-684.
Sharma, A. K., & Mittal, N. D. (2010). Review on stress and vibration analysis of composite plates. Journal of Applied Sciences(Faisalabad), 10(23), 3156-3166.
Sharma, A. K., & Mittal, N. D. (2013). Free vibration analysis of laminated composite plates with elastically restrained edges using FEM. Central European Journal of Engineering, 3(2), 306-315.
Wakashima, K., Hirano, T., & Niino, M. (1990). Space applications of advanced structural materials. ESA SP, 303, 97.
Wu, J. H., Chen, H. L., & Liu, A. Q. (2007). Exact solutions for free-vibration analysis of rectangular plates using Bessel functions. Journal of Applied Mechanics, 74(6), 1247-1251.
Xiang, S., Jin, Y. X., Bi, Z. Y., Jiang, S. X., & Yang, M. S. (2011). A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Composite Structures, 93(11), 2826-2832.
Xiang, S., & Kang, G. W. (2013). A n th-order shear deformation theory for the bending analysis on the functionally graded plates. European Journal of Mechanics-A/Solids, 37, 336-343.
Yang, J., & Shen, H. S. (2003). Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. Journal of Sound and Vibration, 261(5), 871-893.
Zhao, X., Lee, Y. Y., & Liew, K. M. (2009). Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. Journal of Sound and Vibration, 319(3), 918-939.
Boay, C. G. (1996). Free vibration of laminated composite plates with a central circular hole. Composite structures, 35(4), 357-368.
Efraim, E., & Eisenberger, M. (2007). Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. Journal of Sound and Vibration, 299(4), 720-738.
Frostig, Y., & Shenhar, Y. (1995). High-order bending of sandwich beams with a transversely flexible core and unsymmetrical laminated composite skins. Composites Engineering, 5(4), 405-414.
Fukui, Y., & Yamanaka, N. (1992). Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure. JSME international journal. Ser. 1, Solid mechanics, strength of materials, 35(4), 379-385.
Fukui, Y., Yamanaka, N., & Wakashima, K. (1993). The stresses and strains in a thick-walled tube for functionally graded material under uniform thermal loading. JSME international journal. Series A, mechanics and material engineering, 36(2), 156-162.
Huang, X. L., & Shen, H. S. (2004). Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures, 41(9), 2403-2427.
Matsunaga, H. (2008). Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite structures, 82(4), 499-512.
Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C. M. C., Jorge, R. M. N., & Soares, C. M. M. (2013). Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering, 44(1), 657-674.
Reddy, J. N. (1997). Mechanics of laminated composite plates: theory and analysis (Vol. 1, pp. 95-154). Boca Raton: CRC press.
Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1-3), 663-684.
Sharma, A. K., & Mittal, N. D. (2010). Review on stress and vibration analysis of composite plates. Journal of Applied Sciences(Faisalabad), 10(23), 3156-3166.
Sharma, A. K., & Mittal, N. D. (2013). Free vibration analysis of laminated composite plates with elastically restrained edges using FEM. Central European Journal of Engineering, 3(2), 306-315.
Wakashima, K., Hirano, T., & Niino, M. (1990). Space applications of advanced structural materials. ESA SP, 303, 97.
Wu, J. H., Chen, H. L., & Liu, A. Q. (2007). Exact solutions for free-vibration analysis of rectangular plates using Bessel functions. Journal of Applied Mechanics, 74(6), 1247-1251.
Xiang, S., Jin, Y. X., Bi, Z. Y., Jiang, S. X., & Yang, M. S. (2011). A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Composite Structures, 93(11), 2826-2832.
Xiang, S., & Kang, G. W. (2013). A n th-order shear deformation theory for the bending analysis on the functionally graded plates. European Journal of Mechanics-A/Solids, 37, 336-343.
Yang, J., & Shen, H. S. (2003). Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. Journal of Sound and Vibration, 261(5), 871-893.
Zhao, X., Lee, Y. Y., & Liew, K. M. (2009). Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. Journal of Sound and Vibration, 319(3), 918-939.