How to cite this paper
Akbardoost, J. (2014). Size and crack length effects on fracture toughness of polycrystalline graphite.Engineering Solid Mechanics, 2(3), 183-192.
Refrences
Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile?shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.
Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115-123.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials. Rock Mechanics and Rock Engineering, 46(5), 1023-1034.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), 175-182.
Ayatollahi, M. R., & Akbardoost, J. (2012). Size effects on fracture toughness of quasi-brittle materials–A new approach. Engineering Fracture Mechanics, 92, 89-100.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). Fracture analysis of some ceramics under mixed mode loading. Journal of the American Ceramic Society, 94(2), 561-569.
Bazant, Z. P. (1984). Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, 110(4), 518-535.
Ba?ant, Z. P., Gettu, R., & Kazemi, M. T. (1991, January). Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 28, No. 1, pp. 43-51). Pergamon.
Bazant, Z. P., & Planas, J. (1997). Fracture and size effect in concrete and other quasibrittle materials (Vol. 16). CRC press.
Chi, S. H. (2013). Specimen size effects on the compressive strength and Weibull modulus of nuclear graphite of different coke particle size: IG-110 and NBG-18. Journal of Nuclear Materials, 436(1), 185-190.
Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of basic engineering, 85(4), 519-525.
Hu, X., & Wittmann, F. (2000). Size effect on toughness induced by crack close to free surface. Engineering fracture mechanics, 65(2), 209-221.
Karihaloo, B. L. (1995). Tension softening diagrams and longitudinally reinforced beams. Fracture of brittle disordered materials: concrete, rock and ceramic, 35-50.
Karihaloo, B. L. (1999). Size effect in shallow and deep notched quasi-brittle structures. International Journal of Fracture, 95(1-4), 379-390.
Karihaloo, B. L., & Xiao, Q. Z. (2001). Higher order terms of the crack tip asymptotic field for a notched three-point bend beam. International Journal of Fracture, 112(2), 111-128.
Li, H., Li, J., Singh, G., & Fok, A. (2013). Fracture behavior of nuclear graphite NBG-18. Carbon, 60, 46-56.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Sakai, M. & Kurita, H. (1995) Deformation and fracture in the frontal process zone and the crack-face contact region of a polycrystalline graphite. In: Baker G, Karihaloo BL (eds) Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics. E & FN Spon, London pp 227-245
Sakai, M., & Kurita, H. (1996). Size?Effect on the Fracture Toughness and the R?Curve of Carbon Materials. Journal of the American Ceramic Society, 79(12), 3177-3184.
Sakai, M., & Nonoyama, R. (2005). Nonlinear Fracture of a Polycrystalline Graphite—Size-Effect Law and Irwin’s Similarity. In Fracture Mechanics of Ceramics (pp. 337-351). Springer US.
Schmidt, R. A. (1980, January). A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In The 21st US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24, 109-114.
Wittmann, F. H. & Hu, X. (1991). Fracture process zone in cementitious materials. International Journal of Fracture, 51(1), 3-18.
Yamauchi, Y., Nakano, M., Kishida, K. & Okabe, T. (2000). Measurement of fracture toughness for brittle materials under mixed mode impact loading using center-notched disk specimen. Journal of the Society of Materials Science, Japan, 49 (12), 1324-1329.
Yamauchi, Y., Nakano, M., Kishida, K. & Okabe, T. (2001). Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen. Journal of the Society of Materials Science, Japan, 50 (3), 224-229.
Yoon, J. H., Byun, T. S., Strizak, J. P. & Snead, L. L. (2011). Characterization of tensile strength and fracture toughness of nuclear graphite NBG-18 using subsize specimens. Journal of Nuclear Materials, 412 (3), 315-320.
Aliha, M. R. M., & Ayatollahi, M. R. (2013). Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Engineering Fracture Mechanics, 103, 115-123.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials. Rock Mechanics and Rock Engineering, 46(5), 1023-1034.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Awaji, H., & Sato, S. (1978). Combined mode fracture toughness measurement by the disk test. Journal of Engineering Materials and Technology, 100(2), 175-182.
Ayatollahi, M. R., & Akbardoost, J. (2012). Size effects on fracture toughness of quasi-brittle materials–A new approach. Engineering Fracture Mechanics, 92, 89-100.
Ayatollahi, M. R., & Aliha, M. R. M. (2011). Fracture analysis of some ceramics under mixed mode loading. Journal of the American Ceramic Society, 94(2), 561-569.
Bazant, Z. P. (1984). Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, 110(4), 518-535.
Ba?ant, Z. P., Gettu, R., & Kazemi, M. T. (1991, January). Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 28, No. 1, pp. 43-51). Pergamon.
Bazant, Z. P., & Planas, J. (1997). Fracture and size effect in concrete and other quasibrittle materials (Vol. 16). CRC press.
Chi, S. H. (2013). Specimen size effects on the compressive strength and Weibull modulus of nuclear graphite of different coke particle size: IG-110 and NBG-18. Journal of Nuclear Materials, 436(1), 185-190.
Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of basic engineering, 85(4), 519-525.
Hu, X., & Wittmann, F. (2000). Size effect on toughness induced by crack close to free surface. Engineering fracture mechanics, 65(2), 209-221.
Karihaloo, B. L. (1995). Tension softening diagrams and longitudinally reinforced beams. Fracture of brittle disordered materials: concrete, rock and ceramic, 35-50.
Karihaloo, B. L. (1999). Size effect in shallow and deep notched quasi-brittle structures. International Journal of Fracture, 95(1-4), 379-390.
Karihaloo, B. L., & Xiao, Q. Z. (2001). Higher order terms of the crack tip asymptotic field for a notched three-point bend beam. International Journal of Fracture, 112(2), 111-128.
Li, H., Li, J., Singh, G., & Fok, A. (2013). Fracture behavior of nuclear graphite NBG-18. Carbon, 60, 46-56.
Mirsayar, M. M., Aliha, M. R. M., & Samaei, A. T. (2014). On fracture initiation angle near bi-material notches–Effects of first non-singular stress term. Engineering Fracture Mechanics, 119, 124-131.
Sakai, M. & Kurita, H. (1995) Deformation and fracture in the frontal process zone and the crack-face contact region of a polycrystalline graphite. In: Baker G, Karihaloo BL (eds) Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics. E & FN Spon, London pp 227-245
Sakai, M., & Kurita, H. (1996). Size?Effect on the Fracture Toughness and the R?Curve of Carbon Materials. Journal of the American Ceramic Society, 79(12), 3177-3184.
Sakai, M., & Nonoyama, R. (2005). Nonlinear Fracture of a Polycrystalline Graphite—Size-Effect Law and Irwin’s Similarity. In Fracture Mechanics of Ceramics (pp. 337-351). Springer US.
Schmidt, R. A. (1980, January). A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. In The 21st US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24, 109-114.
Wittmann, F. H. & Hu, X. (1991). Fracture process zone in cementitious materials. International Journal of Fracture, 51(1), 3-18.
Yamauchi, Y., Nakano, M., Kishida, K. & Okabe, T. (2000). Measurement of fracture toughness for brittle materials under mixed mode impact loading using center-notched disk specimen. Journal of the Society of Materials Science, Japan, 49 (12), 1324-1329.
Yamauchi, Y., Nakano, M., Kishida, K. & Okabe, T. (2001). Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen. Journal of the Society of Materials Science, Japan, 50 (3), 224-229.
Yoon, J. H., Byun, T. S., Strizak, J. P. & Snead, L. L. (2011). Characterization of tensile strength and fracture toughness of nuclear graphite NBG-18 using subsize specimens. Journal of Nuclear Materials, 412 (3), 315-320.